Issue
Acta Acust.
Volume 9, 2025
Topical Issue - Virtual acoustics
Article Number 6
Number of page(s) 18
DOI https://doi.org/10.1051/aacus/2024068
Published online 21 January 2025
  1. G. Keidser, G. Naylor, D.S. Brungart, A. Caduff, J. Campos, S. Carlile, M.G. Carpenter, G. Grimm, V. Hohmann, I. Holube, S. Launer, T. Lunner, R. Mehra, F. Rapport, M. Slaney, K. Smeds: The quest for ecological validity in hearing science: what it is, why it matters, and how to advance it, Ear and Hearing 41, Supplement 1 (2020) 5S–19S. https://doi.org/10.1097/AUD.0000000000000944. [CrossRef] [PubMed] [Google Scholar]
  2. H. Fletcher: Auditory patterns, Reviews of Modern Physics 12, 1 (1940) 47–65. https://doi.org/10.1103/RevModPhys.12.47. [CrossRef] [Google Scholar]
  3. N.F. Viemeister: Temporal modulation transfer functions based upon modulation thresholds, Journal of the Acoustical Society of America 66, 5 (1979) 1364–1380. https://doi.org/10.1121/1.383531. [CrossRef] [PubMed] [Google Scholar]
  4. A.W. Mills: On the minimum audible angle, Journal of the Acoustical Society of America 30, 4 (1958) 237–246. https://doi.org/10.1121/1.1909553. [CrossRef] [Google Scholar]
  5. S.D. Ewert: Defining the proper stimulus and its ecology – mammals, in: B. Fritzsch (ed.), The senses: a comprehensive reference, 2nd edn, Elsevier, Oxford, 2020, pp. 187–206. https://doi.org/10.1016/B978-0-12-809324-5.24238-7. [CrossRef] [Google Scholar]
  6. M. Vorländer: Virtual acoustics: opportunities and limits of spatial sound reproduction, Archives of Acoustics 33, 4 (2008) 413–422. [Google Scholar]
  7. F. Pausch, J. Fels: Localization performance in a binaural real-time auralization system extended to research hearing aids, Trends in Hearing 24 (2020) 233121652090870. https://doi.org/10.1177/2331216520908704. [CrossRef] [Google Scholar]
  8. H. Steffens, M. Schutte, S.D. Ewert: Acoustically driven orientation and navigation in enclosed spaces, Journal of the Acoustical Society of America 152, 3 (2022) 1767–1782. https://doi.org/10.1121/10.0013702. [CrossRef] [PubMed] [Google Scholar]
  9. S. Serafin, A. Adjorlu, L.M. Percy-Smith: A review of virtual reality for individuals with hearing impairments, Multimodal Technologies and Interaction 7, 4 (2023) 36. https://doi.org/10.3390/mti7040036. [CrossRef] [Google Scholar]
  10. A. Neidhardt, C. Schneiderwind, F. Klein: Perceptual matching of room acoustics for auditory augmented reality in small rooms – literature review and theoretical framework, Trends in Hearing 26 (2022) 233121652210929. https://doi.org/10.1177/23312165221092919. [CrossRef] [Google Scholar]
  11. A. Weisser, J.M. Buchholz, C. Oreinos, J. Badajoz-Davila, J. Galloway, T. Beechey, G. Keidser: The ambisonic recordings of typical environments (ARTE) database, Acta Acustica united with Acustica 105, 4 (2019) 695–713. https://doi.org/10.3813/AAA.919349. [CrossRef] [Google Scholar]
  12. J. Peissig, B. Kollmeier: Directivity of binaural noise reduction in spatial multiple noise-source arrangements for normal and impaired listeners, Journal of the Acoustical Society of America 101, 3 (1997) 1660–1670. https://doi.org/10.1121/1.418150. [CrossRef] [PubMed] [Google Scholar]
  13. D.S. Brungart, N. Iyer: Better-ear glimpsing efficiency with symmetrically-placed interfering talkers, Journal of the Acoustical Society of America 132, 4 (2012) 2545–2556. https://doi.org/10.1121/1.4747005. [CrossRef] [PubMed] [Google Scholar]
  14. A.W. Bronkhorst: The cocktail party phenomenon: a review of research on speech intelligibility in multiple-talker conditions, Acta Acustica united with Acustica 86, 1 (2000) 117–128. [Google Scholar]
  15. T. Biberger, S.D. Ewert: The effect of room acoustical parameters on speech reception thresholds and spatial release from masking, Journal of the Acoustical Society of America 146, 4 (2019) 2188–2200. https://doi.org/10.1121/1.5126694. [CrossRef] [PubMed] [Google Scholar]
  16. J.F. Culling, M. Lavandier: Binaural unmasking and spatial release from masking, in: R.Y. Litovsky, M.J. Goupell, R.R. Fay, A.N. Popper (eds), Binaural hearing: with 93 illustrations, Springer International Publishing, Cham, 2021, pp. 209–241. https://doi.org/10.1007/978-3-030-57100-9_8. [Google Scholar]
  17. J. Kießling, B. Kollmeier, U. Baumann: Versorgung mit Hörgeräten und Hörimplantaten, 3., vollständig überarbeitete und erweiterte Auflage, Thieme Verlag, 2018. https://doi.org/10.1055/b-005-143661. [Google Scholar]
  18. E. Jorgensen, Y.-H. Wu: Effects of entropy in real-world noise on speech perception in listeners with normal hearing and hearing loss, Journal of the Acoustical Society of America 154, 6 (2023) 3627–3643. https://doi.org/10.1121/10.0022577. [CrossRef] [PubMed] [Google Scholar]
  19. J.M. Festen, R. Plomp: Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing, Journal of the Acoustical Society of America 88, 4 (1990) 1725–1736. https://doi.org/10.1121/1.400247. [CrossRef] [PubMed] [Google Scholar]
  20. J. Rennies, H. Schepker, I. Holube, B. Kollmeier: Listening effort and speech intelligibility in listening situations affected by noise and reverberation, Journal of the Acoustical Society of America 136, 5 (2014) 2642–2653. https://doi.org/10.1121/1.4897398. [CrossRef] [PubMed] [Google Scholar]
  21. I. Arweiler, J.M. Buchholz, T. Dau: Speech intelligibility enhancement by early reflections, Proceedings of the International Symposium on Auditory and Audiological Research 2 (2009) 289–298. [Google Scholar]
  22. T. Houtgast, H.J.M. Steeneken, R. Plomp: Predicting speech intelligibility in rooms from the modulation transfer function. I. General room acoustics, Acta Acustica united with Acustica 46, 1 (1980) 60–72. [Google Scholar]
  23. H.J.M. Steeneken, T. Houtgast: A physical method for measuring speech-transmission quality, Journal of the Acoustical Society of America 67, 1 (1980) 318–326. https://doi.org/10.1121/1.384464. [CrossRef] [PubMed] [Google Scholar]
  24. E. Brandewie, P. Zahorik: Prior listening in rooms improves speech intelligibility, Journal of the Acoustical Society of America 128, 1 (2010) 291–299. https://doi.org/10.1121/1.3436565. [CrossRef] [PubMed] [Google Scholar]
  25. M. Karjalainen, T. Peltonen: Estimation of modal decay parameters from noisy response measurements, Journal of the Audio Engineering Society 50 (2002) 11. [Google Scholar]
  26. W. Reichardt, O.A. Alim, W. Schmidt: Abhängigkeit der grenzen zwischen brauchbarer und unbrauchbarer durchsichtigkeit von der art des musikmotives, der nachhallzeit und der nachhalleinsatzzeit, Applied Acoustica 7, 4 (1974) 243–264. https://doi.org/10.1016/0003-682X(74)90033-4. [CrossRef] [Google Scholar]
  27. B.U. Seeber: Die SOFE-Hörumgebung für die audiologische Forschung–Aufbau und Ergebnisse aus der Anwendung, in: 17. Jahrestagung der Deutschen Gesellschaft für Audiologie, 2014. https://mediatum.ub.tum.de/doc/1222836/document.pdf. [Google Scholar]
  28. G. Grimm, S. Ewert, V. Hohmann: Evaluation of spatial audio reproduction schemes for application in hearing aid research, Acta Acustica united with Acustica 101, 4 (2015) 842–854. https://doi.org/10.3813/AAA.918878. [CrossRef] [Google Scholar]
  29. V. Best, G. Keidser, J.M. Buchholz, K. Freeston: An examination of speech reception thresholds measured in a simulated reverberant cafeteria environment, International Journal of Audiology 54, 10 (2015) 682–690. https://doi.org/10.3109/14992027.2015.1028656. [CrossRef] [PubMed] [Google Scholar]
  30. J. Cubick, T. Dau: Validation of a virtual sound environment system for testing hearing aids, Acta Acustica united with Acustica 102, 3 (2016) 547–557. https://doi.org/10.3813/AAA.918972. [CrossRef] [Google Scholar]
  31. J.F. Culling: Speech intelligibility in virtual restaurants, Journal of the Acoustical Society of America 140, 4 (2016) 2418–2426. https://doi.org/10.1121/1.4964401. [CrossRef] [PubMed] [Google Scholar]
  32. T. Weller, V. Best, J.M. Buchholz, T. Young: A method for assessing auditory spatial analysis in reverberant multitalker environments, Journal of the American Academy of Audiology 27, 7 (2016) 601–611. https://doi.org/10.3766/jaaa.15109. [CrossRef] [PubMed] [Google Scholar]
  33. A. Ahrens, M. Marschall, T. Dau: Measuring speech intelligibility with speech and noise interferers in a loudspeaker-based virtual sound environment, Journal of the Acoustical Society of America 141, 5 (2017) 3510–3510. https://doi.org/10.1121/1.4987360. [CrossRef] [Google Scholar]
  34. A. Westermann, J.M. Buchholz: The effect of nearby maskers on speech intelligibility in reverberant, multi-talker environments, Journal of the Acoustical Society of America 141, 3 (2017) 2214–2223. https://doi.org/10.1121/1.4979000. [CrossRef] [PubMed] [Google Scholar]
  35. V. Hohmann, R. Paluch, M. Krueger, M. Meis, G. Grimm: The virtual reality lab: realization and application of virtual sound environments, Ear and Hearing 41, Supplement 1 (2020) 31S–38S. https://doi.org/10.1097/AUD.0000000000000945. [CrossRef] [PubMed] [Google Scholar]
  36. M.J. Evans, A.I. Tew, J.A.S. Angus: Relative spatialization of ambisonic and transaural speech, in: Audio Engineering Society Convention 104, Audio Engineering Society, 1998. Available at https://www.aes.org/e-lib/browse.cfm?elib=8512 (accessed May 03, 2024). [Google Scholar]
  37. N. Mansour, M. Marschall, T. May, A. Westermann, T. Dau: Speech intelligibility in a realistic virtual sound environment, Journal of the Acoustical Society of America 149, 4 (2021) 2791–2801. https://doi.org/10.1121/10.0004779. [CrossRef] [PubMed] [Google Scholar]
  38. J.M. Buchholz, V. Best: Speech detection and localization in a reverberant multitalker environment by normal-hearing and hearing-impaired listeners, Journal of the Acoustical Society of America 147, 3 (2020) 1469–1477. https://doi.org/10.1121/10.0000844. [CrossRef] [PubMed] [Google Scholar]
  39. K. Kondo, T. Chiba, Y. Kitashima, N. Yano: Intelligibility comparison of Japanese speech with competing noise spatialized in real and virtual acoustic environments, Acoustical Science and Technology 31, 3 (2010) 231–238. https://doi.org/10.1250/ast.31.231. [CrossRef] [Google Scholar]
  40. A. Ahrens, M. Marschall, T. Dau: Measuring and modeling speech intelligibility in real and loudspeaker-based virtual sound environments, Hearing Research 377 (2019) 307–317. https://doi.org/10.1016/j.heares.2019.02.003. [CrossRef] [PubMed] [Google Scholar]
  41. M. Rychtáriková, T.V.D. Bogaert, G. Vermeir, J. Wouters: Perceptual validation of virtual room acoustics: Sound localisation and speech understanding, Applied Acoustica 72, 4 (2011) 196–204. https://doi.org/10.1016/j.apacoust.2010.11.012. [CrossRef] [Google Scholar]
  42. Ľ. Hládek, S.D. Ewert, B.U. Seeber: Communication conditions in virtual acoustic scenes in an underground station, in: 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 8–10 September, IEEE, 2021, pp. 1–8. https://doi.org/10.1109/I3DA48870.2021.9610843. [Google Scholar]
  43. J. Schütze, S.D. Ewert, C. Kirsch, B. Kollmeier: Virtual acoustics and audiology: speech intelligibility in standard spatial configurations and in a living room, in: Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023, Turin, Italy, 11–15 September, European Acoustics Association, 2024, pp. 3383–3387. https://doi.org/10.61782/fa.2023.1118. [Google Scholar]
  44. K.S. Helfer, L.A. Wilber: Hearing loss, aging, and speech perception in reverberation and noise, Journal of Speech, Language and Hearing Research 33, 1 (1990) 149–155. https://doi.org/10.1044/jshr.3301.149. [CrossRef] [Google Scholar]
  45. R. Plomp, A.M. Mimpen: Improving the reliability of testing the speech reception threshold for sentences, International Journal of Audiology 18, 1 (1979) 43–52. https://doi.org/10.3109/00206097909072618. [CrossRef] [Google Scholar]
  46. B. Hagerman: Sentences for testing speech intelligibility in noise, Scandinavian Audiology 11, 2 (1982) 79–87. https://doi.org/10.3109/01050398209076203. [CrossRef] [PubMed] [Google Scholar]
  47. A.W. Bronkhorst, R. Plomp: A clinical test for the assessment of binaural speech perception in noise, International Journal of Audiology 29, 5 (1990) 275–285. https://doi.org/10.3109/00206099009072858. [CrossRef] [Google Scholar]
  48. B. Kollmeier, M. Wesselkamp: Development and evaluation of a German sentence test for objective and subjective speech intelligibility assessment, Journal of the Acoustical Society of America 102, 4 (1997) 2412–2421. https://doi.org/10.1121/1.419624. [CrossRef] [PubMed] [Google Scholar]
  49. N.J. Versfeld, L. Daalder, J.M. Festen, T. Houtgast: Method for the selection of sentence materials for efficient measurement of the speech reception threshold, Journal of the Acoustical Society of America 107, 3 (2000) 1671–1684. https://doi.org/10.1121/1.428451. [CrossRef] [PubMed] [Google Scholar]
  50. A. Dietz, M. Buschermöhle, A.A. Aarnisalo, A. Vanhanen, T. Hyyrynen, O. Aaltonen, H. Löppönen, M.A. Zokoll, B. Kollmeier: The development and evaluation of the Finnish Matrix Sentence Test for speech intelligibility assessment, Acta Oto-laryngologica (Stockholm) 134, 7 (2004) 728–737. https://doi.org/10.3109/00016489.2014.898185. [CrossRef] [PubMed] [Google Scholar]
  51. M.T. Cord, R.K. Surr, B.E. Walden, O. Dyrlund: Relationship between laboratory measures of directional advantage and everyday success with directional microphone hearing aids, Journal of the American Academy of Audiology 15, 05 (2004) 353–364. https://doi.org/10.3766/jaaa.15.5.3. [CrossRef] [PubMed] [Google Scholar]
  52. K.M. Miles, G. Keidser, K. Freeston, T. Beechey, V. Best, J.M. Buchholz: Development of the everyday conversational sentences in noise test, Journal of the Acoustical Society of America 147, 3 (2020) 1562–1576. https://doi.org/10.1121/10.0000780. [CrossRef] [PubMed] [Google Scholar]
  53. S. van de Par, S.D. Ewert, L. Hladek, C. Kirsch, J. Schütze, J. Llorca-Bofí, G. Grimm, M.M. Hendrikse, B. Kollmeier, B.U. Seeber: Auditory-visual scenes for hearing research, Acta Acustica 6 (2022) 55. https://doi.org/10.1051/aacus/2022032. [CrossRef] [EDP Sciences] [Google Scholar]
  54. G. Grimm, M. Hendrikse, V. Hohmann: Pub environment, Zenodo, 2021. https://doi.org/10.5281/zenodo.5886987. [Google Scholar]
  55. L. Hladek, B.U. Seeber: Underground station environment, Zenodo, 2022. https://doi.org/10.5281/zenodo.6025631. [Google Scholar]
  56. F. Wolters, K. Smeds, E. Schmidt, E.K. Christensen, C. Norup: Common sound scenarios: a context-driven categorization of everyday sound environments for application in hearing-device research, Journal of the American Academy of Audiology 27, 07 (2016) 527–540. https://doi.org/10.3766/jaaa.15105. [CrossRef] [PubMed] [Google Scholar]
  57. C. Díaz, A. Pedrero, The reverberation time of furnished rooms in dwellings, Applied Acoustica 66, 8 (2005) 945–956. https://doi.org/10.1016/j.apacoust.2004.12.002. [CrossRef] [Google Scholar]
  58. M. Schulte, M. Vormann, M. Meis, K. Wagener, B. Kollmeier: Vergleich der Höranstrengung im Alltag und im Labor, in: 16. Jahrestagung der Deutschen Gesellschaft für Audiologie, 2013. [Google Scholar]
  59. J. Schütze, C. Kirsch, K.C. Wagener, B. Kollmeier, S.D. Ewert: Living room environment, Zenodo, 2021. https://doi.org/10.5281/zenodo.5747753. [Google Scholar]
  60. T. Wendt, S. van de Par, S. Ewert: A computationally-efficient and perceptually-plausible algorithm for binaural room impulse response simulation, Journal of the Audio Engineering Society 62, 11 (2014) 748–766. https://doi.org/10.17743/jaes.2014.0042. [CrossRef] [Google Scholar]
  61. C. Kirsch, T. Wendt, H. Hu, S.D. Ewert: Computationally-efficient simulation of late reverberation for inhomogeneous boundary conditions and coupled rooms, Journal of the Audio Engineering Society 71 (2023) 4. [Google Scholar]
  62. H.S. Braren, J. Fels: A high-resolution head-related transfer function data set and 3D-scan of KEMAR, RWTH Aachen University, 2020. https://doi.org/10.18154/RWTH-2020-11307. [Google Scholar]
  63. S.D. Ewert: AFC – a modular framework for running psychoacoustic experiments and computational perception models, in: Proceedings of the International Conference on Acoustics AIA-DAGA, Merano, 18–21 March, DEGA, 2013, pp. 1326–1329. [Google Scholar]
  64. K. Wagener, T. Brand, B. Kollmeier: Development and evaluation of a German sentence test part III: Evaluation of the Oldenburg sentence test, Zeitschrift Fur Audiologie 38 (1999) 86–95. [Google Scholar]
  65. W. Schubotz, T. Brand, B. Kollmeier, S.D. Ewert: Monaural speech intelligibility and detection in maskers with varying amounts of spectro-temporal speech features, Journal of the Acoustical Society of America 140, 1 (2016) 524. https://doi.org/10.1121/1.4955079. [CrossRef] [PubMed] [Google Scholar]
  66. I. Holube, S. Fredelake, M. Vlaming, B. Kollmeier: Development and analysis of an International Speech Test Signal (ISTS), International Journal of Audiology 49, 12 (2010) 891–903. https://doi.org/10.3109/14992027.2010.506889. [CrossRef] [PubMed] [Google Scholar]
  67. C. Kirsch, J. Poppitz, T. Wendt, S. van de Par, S.D. Ewert: Spatial resolution of late reverberation in virtual acoustic environments, Trends in Hearing 25 (2021) 233121652110549. https://doi.org/10.1177/23312165211054924. [CrossRef] [Google Scholar]
  68. F. Brinkmann, A. Lindau, S. Weinzierl, M. Müller-Trapet, R. Opdam, M. Vorländer: A high resolution and full-spherical head-related transfer function database for different head-above-torso orientations, Journal of the Audio Engineering Society 65, 10 (2017) 841–848. https://doi.org/10.17743/jaes.2017.0033. [CrossRef] [Google Scholar]
  69. J.S. Bradley, H. Sato, M. Picard: On the importance of early reflections for speech in rooms, Journal of the Acoustical Society of America 11, 6 (2003) 3233. https://doi.org/10.1121/1.1570439. [CrossRef] [PubMed] [Google Scholar]
  70. ISO 3382-1:2009 : Acoustics – measurement of room acoustic parameters. Part 1: Performance spaces, 2022. Available at https://www.iso.org/standard/40979.html (accessed December. 30, 2022). [Google Scholar]
  71. M. Vorländer, H. Bietz, P.-T. Bundesanstalt: Comparison of methods for measuring reverberation time, Acustica 80 (1994) 205–215. [Google Scholar]
  72. B. Rakerd, E.J. Hunter, M. Berardi, P. Bottalico: Assessing the acoustic characteristics of rooms: a tutorial with examples, Perspectives of the ASHA Special Interest Group 3, 19 (2018) 8–24. https://doi.org/10.1044/persp3.SIG19.8. [CrossRef] [PubMed] [Google Scholar]
  73. J.S. Bradley, R. Reich, S.G. Norcross: A just noticeable difference in C50 for speech, Applied Acoustica 58 (1999) 99–108. [CrossRef] [Google Scholar]
  74. A.J. Kolarik, B.C.J. Moore, P. Zahorik, S. Cirstea, S. Pardhan: Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss, Attention, Perception, & Psychophysics 78, 2 (2016) 373–395. https://doi.org/10.3758/s13414-015-1015-1. [CrossRef] [PubMed] [Google Scholar]
  75. E. Larsen, N. Iyer, C.R. Lansing, A.S. Feng: On the minimum audible difference in direct-to-reverberant energy ratioa), Journal of the Acoustical Society of America 124 (2008) 1. [Google Scholar]
  76. J. Donley: jdonley/SoundZone_Tools. MATLAB, 2024. Available: https://github.com/jdonley/SoundZone_Tools [Google Scholar]
  77. A. Haeussler, S. van de Par: Crispness, speech intelligibility, and coloration of reverberant recordings played back in another reverberant room (room-in-room), Journal of the Acoustical Society of America 145, 2 (2019) 931–944. https://doi.org/10.1121/1.5090103. [CrossRef] [PubMed] [Google Scholar]
  78. K. Hiyama, S. Komiyama, K. Hamasaki: The minimum number of loudspeakers and its arrangement for reproducing the spatial impression of diffuse sound field, in: Audio Engineering Society Convention 113, Audio Engineering Society, 2002. Available at https://www.aes.org/e-lib/online/browse.cfm?elib=11272 (accessed May 11, 2024). [Google Scholar]
  79. S. Fichna, T. Biberger, B.U. Seeber, S.D. Ewert: Effect of acoustic scene complexity and visual scene representation on auditory perception in virtual audio-visual environments, in: 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 8–10 September, IEEE, 2021, pp. 1–9. https://doi.org/10.1109/I3DA48870.2021.9610916. [Google Scholar]
  80. A. Ahrens, K.D. Lund: Auditory spatial analysis in reverberant multi-talker environments with congruent and incongruent audio-visual room information, Journal of the Acoustical Society of America 152, 3 (2022) 1586–1594. https://doi.org/10.1121/10.0013991. [CrossRef] [PubMed] [Google Scholar]
  81. M. Schutte, S.D. Ewert, L. Wiegrebe: The percept of reverberation is not affected by visual room impression in virtual environments, Journal of the Acoustical Society of America 145, 3 (2019) EL229–EL235. https://doi.org/10.1121/1.5093642. [CrossRef] [PubMed] [Google Scholar]
  82. R. Ibrahim, K. Miles, R.P. Derleth, J.M. Buchholz: Visual speech benefit provided by realistic sentences in noise, Journal of the Acoustical Society of America 154, 4_supplement (2023) 152. https://doi.org/10.1121/10.0023092. [Google Scholar]
  83. S.D. Ewert, W. Schubotz, T. Brand, B. Kollmeier: Binaural masking release in symmetric listening conditions with spectro-temporally modulated maskers, Journal of the Acoustical Society of America 142, 1 (2017) 12–28. https://doi.org/10.1121/1.4990019. [CrossRef] [PubMed] [Google Scholar]
  84. K.C. Wagener, T. Brand, B. Kollmeier: The role of silent intervals for sentence intelligibility in fluctuating noise in hearing-impaired listeners: El papel de los intervalos de silencio para la inteligibilidad de frases en medio de ruido fluctuante en sujetos hipoacùsicos, International Journal of Audiology 45, 1 (2006) 26–33. https://doi.org/10.1080/14992020500243851. [CrossRef] [PubMed] [Google Scholar]
  85. I. Holube, S. Blab, K. Fürsen, S. Gürtler, K. Meisenbacher, D. Nguyen, S. Taesler: Einfluss des Maskierers und der Testmethode auf die Sprachverständlichkeitsschwelle von jüngeren und älteren Normalhörenden, Zeitschrift für Audiologie 48 (2009) 120–127. [Google Scholar]
  86. W.A. Dreschler, H. Verschuure, C. Ludvigsen, S. Westermann: ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. Ruidos ICRA: Señates de ruido artificial con espectro similar al habla y propiedades temporales para pruebas de instrumentos auditivos, Audiology, 2001. Available at https://www.tandfonline.com/doi/abs/10.3109/00206090109073110 (accessed: May 11, 2024). [Google Scholar]
  87. R. Beutelmann, T. Brand: Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners, Journal of the Acoustical Society of America 120, 1 (2006) 331–342. https://doi.org/10.1121/1.2202888. [CrossRef] [PubMed] [Google Scholar]
  88. M. Lavandier, J.F. Culling: Speech segregation in rooms: monaural, binaural, and interacting effects of reverberation on target and interferer, Journal of the Acoustical Society of America 123, 4 (2008) 2237–2248. https://doi.org/10.1121/1.2871943. [CrossRef] [PubMed] [Google Scholar]
  89. J. Rennies, G. Kidd: Benefit of binaural listening as revealed by speech intelligibility and listening effort, Journal of the Acoustical Society of America 144, 4 (2018) 2147–2159. https://doi.org/10.1121/1.5057114. [CrossRef] [PubMed] [Google Scholar]
  90. K.S. Pearsons, R.L. Bennett, S.A. Fidell: Speech levels in various noise environments, Office of Health and Ecological Effects, Office of Research and Development, U.S. EPA, 1977. [Google Scholar]
  91. K. Smeds, F. Wolters, M. Rung: Estimation of signal-to-noise ratios in realistic sound scenarios, Journal of the American Academy of Audiology 26, 2 (2015) 183–196. https://doi.org/10.3766/jaaa.26.2.7. [CrossRef] [PubMed] [Google Scholar]
  92. A. Weisser, J.M. Buchholz: Conversational speech levels and signal-to-noise ratios in realistic acoustic conditions, Journal of the Acoustical Society of America 145, 1 (2019) 349–360. https://doi.org/10.1121/1.5087567. [CrossRef] [PubMed] [Google Scholar]
  93. C. Kirsch, S.D. Ewert: Filter-based first- and higher-order diffraction modeling for geometrical acoustics, Acta Acustica, 8 (2024) 73. https://doi.org/10.1051/aacus/2024059. [CrossRef] [EDP Sciences] [Google Scholar]
  94. C. Kirsch, S.D. Ewert: Binaural effects and rendering of edge diffraction in geometrical acoustics, Journal of the Acoustical Society of America 154, 4_supplement (2023) A28. https://doi.org/10.1121/10.0023528. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.