Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 5
Number of page(s) 14
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2024082
Published online 20 January 2025
  1. Légère Reeds. Available at https://www.legere.com/products/saxophone-reeds/. [Google Scholar]
  2. Vandoren Reeds. Available at https://vandoren.fr/en/reeds-technical-elements/. [Google Scholar]
  3. B. Gazengel, J.-P. Dalmont, J.-F. Petiot: Link between objective and subjective characterizations of Bb clarinet reeds. Applied Acoustics 106 (2016) 155–166. [CrossRef] [Google Scholar]
  4. P.-A. Taillard: Theoretical and experimental study of the role of the reed in clarinet playing. PhD thesis, 2018, Le Mans Université. [Google Scholar]
  5. C. Kemp, G. Scavone: Mechanical, anatomical and modeling techniques for alto saxophone reed evaluation and classification. Wood Science and Technology 54 (2020) 1677–1704. [CrossRef] [Google Scholar]
  6. P.-A. Taillard, F. Laloë, M. Gross, J.-P. Dalmont, J. Kergomard: Statistical estimation of mechanical parameters of clarinet reeds using experimental and numerical approaches. Acta Acustica united with Acustica 100, 3 (2014) 555–573. [CrossRef] [Google Scholar]
  7. E. Obataya, M. Norimoto: Acoustic properties of a reed (Arundo donax L.) used for the vibrating plate of a clarinet. Journal of the Acoustical Society of America 106, 2 (1999) 1106–1110. [CrossRef] [Google Scholar]
  8. V. Bucur: Traditional and new materials for the reeds of woodwind musical instruments. Wood Science and Technology 53, 5 (2019) 1157–1187. [CrossRef] [Google Scholar]
  9. D.J. Casadonte: The clarinet reed: an introduction to its biology, chemistry, and physics. PhD thesis, 1995, The Ohio State University. [Google Scholar]
  10. F. Pinard, B. Laine, H. Vach: Musical quality assessment of clarinet reeds using optical holography. Journal of the Acoustical Society of America 113, 3 (2003) 1736–1742. [CrossRef] [PubMed] [Google Scholar]
  11. K. Stetson: Study of clarinet reeds using digital holography. Optical Engineering 53, 11 (2014) 112305. [CrossRef] [Google Scholar]
  12. J.-F. Petiot, P. Kersaudy, G. Scavone, S. McAdams, B. Gazengel: Investigation of the relationships between perceived qualities and sound parameters of saxophone reeds. Acta Acustica united with Acustica 103, 5 (2017) 812–829. [CrossRef] [Google Scholar]
  13. A. Almeida, C. Vergez, R. Caussé: Quasistatic nonlinear characteristics of double-reed instruments. Journal of the Acoustical Society of America 121, 1 (2007) 536–546. [CrossRef] [PubMed] [Google Scholar]
  14. J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements. Journal of the Acoustical Society of America 114, 4 (2003) 2253–2262. [CrossRef] [PubMed] [Google Scholar]
  15. V. Chatziioannou, M. Van Walstijn: Estimation of clarinet reed parameters by inverse modelling. Acta Acustica united with Acustica 98, 4 (2012) 629–639. [CrossRef] [Google Scholar]
  16. A. Chaigne, J. Kergomard: Acoustics of musical instruments, Springer, New York, NY, 2016. [CrossRef] [Google Scholar]
  17. A. Hirschberg, R.W.A. Van de Laar, J.P. Marrou-Maurieres, A.P.J. Wijnands, H.J. Dane, S.G. Kruijswijk, A.J.M. Houtsma: A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments. Acta Acustica united with Acustica 70, 2 (1990) 146–154. [Google Scholar]
  18. A. Gaillard, V. Koehl, B. Gazengel: Theoretical and experimental studies about single cane reeds: a review. Acta Acustica 8 (2024) 63. [CrossRef] [EDP Sciences] [Google Scholar]
  19. T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model. Acta Acustica united with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
  20. S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments. Acta Acustica united with Acustica 101, 1 (2015) 155–173. [CrossRef] [Google Scholar]
  21. M. Van Walstijn, F. Avanzini: Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part II: A lumped model approximation. Acta Acustica united with Acustica 93, 3 (2007) 435–446. [Google Scholar]
  22. A. Muñoz Arancón, B. Gazengel, J.-P. Dalmont, E. Conan: Estimation of saxophone reed parameters during playing. Journal of the Acoustical Society of America 139, 5 (2016) 2754–2765. [CrossRef] [PubMed] [Google Scholar]
  23. T. Yoshinaga, H. Yokoyama, T. Shoji, A. Miki, A. Iida: Global numerical simulation of fluid-structure-acoustic interaction in a single-reed instrument. Journal of the Acoustical Society of America 149, 3 (2021) 1623–1632. [CrossRef] [PubMed] [Google Scholar]
  24. A. Ricardo da Silva, G.P. Scavone, M. van Walstijn: Numerical simulations of fluid-structure interactions in single-reed mouthpieces. Journal of the Acoustical Society of America 122, 3 (2007) 1798–1809. [CrossRef] [PubMed] [Google Scholar]
  25. V. Lorenzoni, D. Ragni: Experimental investigation of the flow inside a saxophone mouthpiece by particle image velocimetry. Journal of the Acoustical Society of America 131, 1 (2012) 715–721. [CrossRef] [PubMed] [Google Scholar]
  26. A.M.C. Valkering: Characterization of a clarinet mouthpiece. Technical Report R-1219-S, Vakgroep Transportfysica – Eindhoven University of Technology, 1993. [Google Scholar]
  27. V. Chatziioannou: Forward and inverse modelling of single-reed woodwind instruments with applications to digital sound synthesis. PhD thesis, Queen’s University Belfast, 2010. [Google Scholar]
  28. F. Avanzini, M. Van Walstijn: Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part I. A one-dimensional distributed model. Acta Acustica united with Acustica 90, 3 (2004) 537–547. [Google Scholar]
  29. A.M. Arancón, B. Gazengel, J.P. Dalmont: Comparison of human and artificial playing of a single reed instrument. Acta Acustica united with Acustica 104, 6 (2018) 1104–1117. [CrossRef] [Google Scholar]
  30. E. Ukshini, J.J.J. Dirckx: Influence of lip position, lip force and blowing pressure on the tuning and playability of an alto saxophone mouthpiece. Applied Acoustics 199 (2022) 109011. [CrossRef] [Google Scholar]
  31. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring: GNU Octave version 8.4.0 manual: a high-level interactive language for numerical computations, 2023. Available at https://www.gnu.org/software/octave/doc/v8.4.0/. [Google Scholar]
  32. M. Şahin, E. Aybek: Jamovi: an easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education 6, 4 (2019) 670–692. [Google Scholar]
  33. E. Marandas, V. Gibiat, C. Besnainou, N. Grand: Caractérisation mécanique des anches simples d’instruments à vent. Le Journal de Physique IV 4, C5 (1994) C5–633. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.