Open Access
Review
Issue |
Acta Acust.
Volume 9, 2025
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 19 | |
Section | Active Control | |
DOI | https://doi.org/10.1051/aacus/2025020 | |
Published online | 16 July 2025 |
- L. Paul: Process of silencing sound oscillations. US Patent 2,043,416, June 9 1936 [Google Scholar]
- L.J. Fogel: Apparatus for improving intelligence under high ambient noise levels. US Patent 2,966,549, December 27 1960 [Google Scholar]
- D. Crombie: Piano: Evolution, Design and Performance. Barnes and Noble Books, New York, 1995 [Google Scholar]
- G.S. Heet: String instrument vibration initiator and sustainer. The Journal of the Acoustical Society of America 65, 6 (1979) 1609–1609 [Google Scholar]
- G. T Osborne, A. A Hoover: Sustainer for a musical instrument. US Patent 5,932,827, August 3 1999 [Google Scholar]
- H. Boutin: Méthodes de contrôle actif d’instruments de musique. Cas de la lame de xylophone et du violon. PhD thesis, UPMC-Université Paris 6 Pierre et Marie Curie, 2011 [Google Scholar]
- T. Meurisse: Contrôle actif appliqué aux instruments de musique à vent. PhD thesis, Paris 6, 2014 [Google Scholar]
- C. Maganza, R. Caussé, F. Laloë: Bifurcations, period doublings and chaos in clarinetlike systems. Europhysics Letters 1, 6 (1986) 295 [Google Scholar]
- J. S Lienard: An overview of speech synthesis, in: Spoken Language Generation and Understanding: Proceedings of the NATO Advanced Study Institute held at Bonas, France, June 26–July 7, 1979. Springer, 1980, pp. 397–412. See also 〈hal-04424757〉 from the same author and coll [Google Scholar]
- V. Martos, H. Boutin, T. Hélie, B. d’Andréa Novel: Radiation impedance control of brass resonators to reshape sounds with vowel spectral envelopes: a numerical study, in: Forum Acusticum 2023: The 10th Convention of the European Acoustics Association, 2023 [Google Scholar]
- C. Vergez: Trompette et trompettiste: un système dynamique non linéaire à analyser, modéliser et simuler dans un contexte musical. PhD thesis, Paris 6, 2000 [Google Scholar]
- N. Lopes: Approche passive pour la modélisation, la simulation et l’étude d’un banc de test robotisé pour les instruments de type cuivre. PhD thesis, Université Paris 6 (UPMC), 2016 [Google Scholar]
- J.D. Polack: Time-domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process. Journal d’acoustique (Les Ulis) 4 (1991) 47–67 [Google Scholar]
- D. Matignon: Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire. PhD thesis, Paris 11, 1994 [Google Scholar]
- T. Hélie: Modélisaiton physique d’instruments de musique en système dynamique et inversion. PhD thesis, Paris 11, 2002 [Google Scholar]
- R. Mignot: Réalisation en guides d’ondes numériques stables d’un modèle acoustique réaliste pour la simulation en temps-réel d’instruments à vent. PhD thesis, Télécom ParisTech, 2009 [Google Scholar]
- A. Thibault: Modélisation, analyse et simulation de l’acoustique dissipative dans les tubes poreux ou rugueux: application aux instruments à vent. PhD thesis, Pau, 2023 [Google Scholar]
- N. Amir, V. Pagneux, J. Kergomard: A study of wave propagation in varying cross-section waveguides by modal decomposition. Part II. Results. The Journal of the Acoustical Society of America 101, 5 (1997) 2504–2517 [Google Scholar]
- L. Menguy, J. Gilbert: Weakly nonlinear gas oscillations in air-filled tubes; solutions and experiments. Acta Acustica United with Acustica 86, 5 (2000) 798–810 [Google Scholar]
- R. Msallam, S. Dequidt, R. Causse, S. Tassart: Physical model of the trombone including nonlinear effects. Application to the sound synthesis of loud tones. Acta Acustica United with Acustica 86, 4 (2000) 725–736 [Google Scholar]
- T. Hélie, V. Smet: Simulation of the weakly nonlinear propagation in a straight pipe: application to a real-time brassy audio effect, in: 2008 16th Mediterranean Conference on Control and Automation. IEEE, 2008, pp. 1580–1585 [Google Scholar]
- M. Campbell, J. Gilbert, M. Arnold: The Science of Brass Instruments. Vol. 436. Springer, 2021 [Google Scholar]
- A.P. McPherson: Techniques and circuits for electromagnetic instrument actuation, in: NIME. London, 2012 [Google Scholar]
- J.P. Dalmont, C. J Nederveen, N. Joly: Radiation impedance of tubes with different flanges: numerical and experimental investigations. Journal of Sound and Vibration 244, 3 (2001) 505–534 [Google Scholar]
- F. Silva, P. Guillemain, J. Kergomard, B. Mallaroni, A.N. Norris: Approximation formulae for the acoustic radiation impedance of a cylindrical pipe. Journal of Sound and Vibration 322, 1–2 (2009) 255–263 [Google Scholar]
- T. Hélie: Modélisation physique d’instruments de musique et de la voix: systèmes dynamiques, problèmes directs et inverses. Habilitation à Diriger des Recherches, 2013, pp. 42–43 [Google Scholar]
- P. Eveno, J.P. Dalmont, R. Caussé, J. Gilbert: Wave propagation and radiation in a horn: comparisons between models and measurements. Acta Acustica United with Acustica 98, 1 (2012) 158–165 [Google Scholar]
- T. Hélie, T. Hézard, R. Mignot, D. Matignon: One-dimensional acoustic models of horns and comparison with measurements. Acta acustica United with Acustica 99, 6 (2013) 960–974 [Google Scholar]
- S. Mathur, B.H. Story: Vocal tract modeling: implementation of continuous length variations in a half-sample delay Kelly-Lochbaum model, in: Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No. 03EX795). IEEE, 2003, pp. 753–756 [Google Scholar]
- J.L. Kelly, C.C. Lochbaum: Speech synthesis, in: Proc. 4th Int. Congr. Acoustics, Sep. 1962, pp. 1–4 [Google Scholar]
- B.H. Story, I.R. Titze, E.A. Hoffman: Vocal tract area functions from magnetic resonance imaging. The Journal of the Acoustical Society of America 100, 1 (1996) 537–554 [Google Scholar]
- H. Boutin, J. Smith, J. Wolfe: Warming up a wind instrument: the time-dependent effects of exhaled air on the resonances of a trombone. The Journal of the Acoustical Society of America 148, 4 (2020) 1817–1823 [Google Scholar]
- N. Thiele: Loudspeakers in vented boxes: Part 1. Journal of the Audio Engineering Society 19, 5 (1971) 382–392 [Google Scholar]
- R.H. Small: Closed-box loudspeaker systems-part 1: analysis. Journal of the Audio Engineering Society 20 (1972) 798–808 [Google Scholar]
- H. Boutin, N. Fletcher, J. Smith, J. Wolfe, Relationships between pressure, flow, lip motion, and upstream and downstream impedances for the trombone. The Journal of the Acoustical Society of America 137, 3 (2015) 1195–1209 [Google Scholar]
- M.S. Howe: On the helmholtz resonator. Journal of Sound and Vibration 45, 3 (1976) 427–440 [Google Scholar]
- A. Thibault, J. Chabassier: Dissipative time-domain one-dimensional model for viscothermal acoustic propagation in wind instruments. The Journal of the Acoustical Society of America 150, 2 (2021) 1165–1175 [Google Scholar]
- V. Välimäki, M. Karjalainen: Improving the Kelly-Lochbaum vocal tract model using conical tube sections and fractional delay filtering techniques, in: ICSLP, 1994 [Google Scholar]
- A. Chaigne: Ondes acoustiques. Editions Ecole Polytechnique, 2001 [Google Scholar]
- R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – comparison between experiment and numerical models. The Journal of the Acoustical Society of America 75, 1 (1984) 241–254 [Google Scholar]
- J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal of Optimization 9, 1 (1998) 112–147 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.