Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 39
Number of page(s) 14
Section Audio Signal Processing and Transducers
DOI https://doi.org/10.1051/aacus/2025023
Published online 25 June 2025
  1. R. El Idrissi, A. Bacha, F. Lmai: Fault diagnosis using Bayesian networks for a single-phase inverter based on MOSFET semiconductors. Materials Today: Proceedings (2024). https://doi.org/10.1016/j.matpr.2024.01.043 [Google Scholar]
  2. P. Kundu: Review of rotating machinery elements condition monitoring using acoustic emission signal. Expert Systems with Applications 252 (2024) 124169 [CrossRef] [Google Scholar]
  3. P.A. Delgado-Arredondo, D. Morinigo-Sotelo, R.A. Osornio-Rios, J.G. Avina-Cervantes, H. Rostro-Gonzalez, R. de Jesus Romero-Troncoso: Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing 83 (2017) 568–589 [Google Scholar]
  4. A.D. Barman, S. Mondal: Experiment on spectrogram feature based CNN for sound anomaly detection, in: 2023 8th International Conference on Computers and Devices for Communication (CODEC). IEEE, 2023, pp. 1–2 [Google Scholar]
  5. A. Altinors, F. Yol, O. Yaman: A sound based method for fault detection with statistical feature extraction in UAV motors. Applied Acoustics 183 (2021) 108325 [CrossRef] [Google Scholar]
  6. S. Lu, X. Wang, Q. He, F. Liu, Y. Liu: Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals. Journal of Sound and Vibration 385 (2016) 16–32 [Google Scholar]
  7. E. Germen, M. Başaran, M. Fidan: Sound based induction motor fault diagnosis using Kohonen self-organizing map. Mechanical Systems and Signal Processing 46 (2014) 45–58 [Google Scholar]
  8. S.S. Ahmed, A.M. Gadelmoula: Industrial noise monitoring using noise mapping technique: a case study on a concrete block-making factory. International Journal of Environmental Science and Technology 19 (2022) 851–862 [Google Scholar]
  9. J. Son, C. Kim, M. Jeong: Unsupervised learning for anomaly detection of electric motors. International Journal of Precision Engineering and Manufacturing 23 (2022) 421–427 [Google Scholar]
  10. A. Suman, C. Kumar, P. Suman: Early detection of mechanical malfunctions in vehicles using sound signal processing. Applied Acoustics 188 (2022) 108578 [CrossRef] [Google Scholar]
  11. M. Chuphal, K. Singh, A. Bisht, V. Sharma, S. Awasthi, S. Vats: Anomaly detection in electro-mechanical devices using MFCC, in: 2024 2nd International Conference on Disruptive Technologies (ICDT). IEEE, 2024, pp. 986–991 [Google Scholar]
  12. M.S. Sidhu, N.A.A. Latib, K.K. Sidhu: MFCC in audio signal processing for voice disorder: a review. Multimedia Tools and Applications 84 (2025) 8015–8035 [Google Scholar]
  13. A.J. Torija, Z. Li, P. Chaitanya: Psychoacoustic modelling of rotor noise. The Journal of the Acoustical Society of America 151 (2022) 1804–1815 [Google Scholar]
  14. F.C. Hirono, J. Robertson, A.J.T. Martinez: Acoustic and psychoacoustic characterisation of small-scale contra-rotating propellers. Journal of Sound and Vibration 569 (2024) 117971 [Google Scholar]
  15. E. Zwicker, H. Fastl: Psychoacoustics: Facts and Models. Vol. 22. Springer Science & Business Media, 2013 [Google Scholar]
  16. M. Yüksel, O. Önen, B.U. Seeber: Acoustics, psychoacoustics, and properties of sound, in: Otology Updates. Springer Nature Switzerland, Cham, 2025, pp. 113–124 [Google Scholar]
  17. J. Park, K. Lee: Harmonic-percussive source separation using harmonicity and sparsity constraints, in: ISMIR, 2015, pp. 148–154 [Google Scholar]
  18. C. Uhle, C. Dittmar, T. Sporer: Extraction of drum tracks from polyphonic music using independent subspace analysis, in: Proc. ICA., 2003, pp. 843–847 [Google Scholar]
  19. O. Gillet, G. Richard: Drum track transcription of polyphonic music using noise subspace projection, in: ISMIR, 2005, pp. 92–99 [Google Scholar]
  20. M. Helen, T. Virtanen: Separation of drums from polyphonic music using non-negative matrix factorization and support vector machine, in: 2005 13th European Signal Processing Conference. IEEE, 2005, pp. 1–4 [Google Scholar]
  21. M. Kim, J. Yoo, K. Kang, S. Choi: Nonnegative matrix partial co-factorization for spectral and temporal drum source separation. IEEE Journal of Selected Topics in Signal Processing 5 (2011) 1192–1204 [Google Scholar]
  22. J.J. Carabias-Orti, T. Virtanen, P. Vera-Candeas, N. Ruiz-Reyes, F.J. Canadas-Quesada: Musical instrument sound multi-excitation model for non-negative spectrogram factorization. IEEE Journal of Selected Topics in Signal Processing 5 (2011) 1144–1158 [Google Scholar]
  23. D. Fitzgerald: Harmonic/percussive separation using median filtering, in: 13th International Conference on Digital Audio Effects (DAFX10), Graz, Austria, 2010 [Google Scholar]
  24. F.D. González-Martínez, J.J. Carabias-Orti, F.J. Cañadas-Quesada, N. Ruiz-Reyes, D. Martínez-Muñoz, S. García-Galán: Improving snore detection under limited dataset through harmonic/percussive source separation and convolutional neural networks. Applied Acoustics 216 (2024) 109811 [CrossRef] [Google Scholar]
  25. T. Zhao, W. Ding, H. Huang, Y. Wu, Adaptive multi-feature fusion for vehicle micro-motor noise recognition considering auditory perception. Sound and Vibration 57 (2023) 133–153 [Google Scholar]
  26. P. Gonzalez, G. Buigues, A.J. Mazon: Noise in electric motors: a comprehensive review. Energies 16 (2023) 5311 [CrossRef] [Google Scholar]
  27. A. Dhanasingh, I. Hochmair: Signal processing & audio processors. Acta Oto-Laryngologica 141 (2021) 106–134 [CrossRef] [Google Scholar]
  28. D. Lee, H.S. Seung: Algorithms for non-negative matrix factorization, in: Advances in Neural Information Processing Systems. Vol. 13. MIT Press, 2000 [Google Scholar]
  29. B.S. Wilson, D.T. Lawson, M. Zerbi, C.C. Finley, R.D. Wolford: New processing strategies in cochlear implantation. Otology & Neurotology 16 (1995) 669–675 [Google Scholar]
  30. J. Qin, S. Zhang, Y. Wang, F. Yang, X. Zhong, W. Lu: Improved skeleton-based activity recognition using convolutional block attention module. Computers and Electrical Engineering 116 (2024) 109231 [CrossRef] [Google Scholar]
  31. X. Hu, J. Lou, T. Chen, J. Ma, G. Li: Quality evaluation method of the DC motor based on VMD and MFCC, in: 2023 China Automation Congress (CAC). IEEE, 2023, pp. 1710–1714 [Google Scholar]
  32. S. Shan, J. Liu, S. Wu, Y. Shao, H. Li: A motor bearing fault voiceprint recognition method based on Mel-CNN model. Measurement 207 (2023) 112408 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.