Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 11
Number of page(s) 14
Section Noise Control
DOI https://doi.org/10.1051/aacus/2024081
Published online 11 February 2025
  1. C. Hou, H. Shao, T. Zheng: The new energy automobile industry development plan has been made, the tire tread material faces the new challenge. Rubber Technology 18 (2020) 369–375. [Google Scholar]
  2. J. Zeng, Y. Que, S. Cai: Development status and design ideas of electric vehicle tire. Rubber Industry 66 (2019) 883–894. [Google Scholar]
  3. R. Wehr, A. Fuchs, S. Breuss: Statistical tyre/road noise modelling based on continuous 3D texture data. Acta Acustica 5 (2021) 52. [CrossRef] [EDP Sciences] [Google Scholar]
  4. J. Pinay, Y. Saito, C. Mignot, F. Gauterin: Understanding the contribution of groove resonance to tire road noise on different surfaces under various operating conditions. Acta Acustica 4 (2020) 6. [CrossRef] [EDP Sciences] [Google Scholar]
  5. K. Seki, S. Shin, T. Tabaru: Analysis of wavelet correlation between tyre sounds and tread patterns, in: 2005 IEEE Networking, Tucson, AZ, USA, 19–22 March, 2005, pp. 241–246. [Google Scholar]
  6. X. Hu, X. Liu, Y. Shan, T. He: Simulation and experimental validation of sound field in a rotating tire cavity arising from acoustic cavity resonance. Applied Sciences 11 (2021) 1121. [CrossRef] [Google Scholar]
  7. W. Zhao, Y. Liu, X. Liu, Y. Shan, X. Hu: Analysis of tire acoustic cavity resonance energy transmission characteristics in wheels based on power flow method. Applied Acoustics 11 (2021) 3979. [Google Scholar]
  8. Y. Kamiyama: Development of a new on-wheel resonator for tire cavity noise. SAE Paper 01 (2014) 0022. [Google Scholar]
  9. S. Kim, K. Sung, D. Lee, S. Huh: Cavity noise sensitivity analysis of tire contour design factors and application of contour optimization methodology. Journal of Central South University 19 (2012) 2386–2393. [CrossRef] [Google Scholar]
  10. G. Wang, L. Qiao, H. Zhou: Influence of PCR tire grounding characteristics to noise and rolling resistance. Journal of Mechanical Engineering 55 (2019) 123–131. [Google Scholar]
  11. X. Hu, X. Liu, Y. Shan, T. He: Simulation and experimental validation of sound field in a rotating tire cavity arising from acoustic cavity resonance. Applied Sciences 11 (2021) 1121. [CrossRef] [Google Scholar]
  12. Y. Liu, X. Liu, Y. Shan, X. Hu, J. Yi: Research on mechanism and evolution features of frequency split phenomenon of tire acoustic cavity resonance. Journal of Vibration and Control 27 (2021) 343–355. [CrossRef] [Google Scholar]
  13. B. Simone, C. Roberto, A. Mats, C. Paola, P. Anna: Modelling of a lined tyre for predicting cavity noise mitigation. Applied Acoustics 5 (2019) 033. [Google Scholar]
  14. H. Hyeonu, S. Mathew, J. Jaehyung, N. Arup: Acoustic metasurface-aided broadband noise reduction in automobile induced by tire-pavement interaction. Materials 14 (2021) 4262. [CrossRef] [PubMed] [Google Scholar]
  15. Z. Mohamed, X. Wang: A study of tyre cavity resonance and noise reduction using inner trim. Mechanical Systems and Signal Processing 50 (2015) 498–509. [CrossRef] [Google Scholar]
  16. B. Simone, M. Abom: Tyre cavity noise: porous materials as a countermeasure. Inter-Noise and Noise-Con Congress and Conference Proceedings. Institute of Noise Control Engineering 253 (2016) 6730–6735. [Google Scholar]
  17. H. Zhou, H. Li, Q. Xia: Study on the resonant noise reduction mechanism of porous materials for tire cavity. Journal of Vibration Engineering 35 (2022) 1147–1156. [Google Scholar]
  18. Y. Yang, Y. Wei: Experimental study on noise reduction of tire with sound-absorbing material, in: China Mechanics Congress-2017 and Proceedings Celebrating the 60th anniversary of the China Society of Mechanics, Beijing, China, 13 August, 2017, p. 15. [Google Scholar]
  19. G. Wang, L. Wu: Effect of properties of melamine porous sound-absorbing material on resonance noise of tire cavity. Rubber Industry 81 (2020) 356–371. [Google Scholar]
  20. L. Zang, T. Lv, Y. Li, X. Wang: Topology optimization of inserts structure of run-flat tire under zero-pressure driving condition. International Journal of Automotive Technology 24 (2023) 311–321. [CrossRef] [Google Scholar]
  21. T. Lv, L. Zang, C. Xue, Y. Li, Y. Mao, X. Wang: Study on the effect of different design parameters of sidewall insert rubber on the mechanical characteristics of self-supporting run-flat tires. Lubricants 11 (2023) 458. [CrossRef] [Google Scholar]
  22. W. Xu, H. Zeng, P. Yang, M. Zang: Numerical analysis on tractive performance of off-road tire on gravel road using a calibrated finite element method-discrete element method model and experimental validation. Journal of Automobile Engineering 234 (2020) 3440–3457. [CrossRef] [Google Scholar]
  23. C. Lecomte, W. Graham, M. Dale: A shell model for tyre belt vibrations. Journal of Sound and Vibration 10 (2010) 1717–1742. [CrossRef] [Google Scholar]
  24. J. Yi, X. Liu, Y. Shan: Characteristics of sound pressure in the tire cavity arising from acoustic cavity resonance excited by road roughness. Applied Acoustics 146 (2019) 218–226. [CrossRef] [Google Scholar]
  25. D. Abdi, M. Monazzam, E. Taban, A. Putra, F. Golbabaei, M. Khadem: Sound absorption performance of natural fiber composite from chrome shave and coffee silver skin. Applied Acoustics 182 (2021) 108264. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.