Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 38
Number of page(s) 16
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2025022
Published online 25 June 2025
  1. L. Jaouen: Propagation models assuming a motionless skeleton, https://apmr.matelys.com/PropagationModels/MotionlessSkeleton/ [Google Scholar]
  2. M.L. Munjal: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design. John Wiley & Sons, 1987 [Google Scholar]
  3. J.F. Allard, N. Atalla: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd edition. Chichester, 2009 [Google Scholar]
  4. L. Chul Hyung, H. Myeong Jae, P. Tae Won, K. Young Sik, S. Kyoung Duck: A comparative study on the transmission loss of helmholtz resonator and quarter, half, conical half-wave resonator using acoustic analysis model. International Journal of Mechanical Engineering and Robotics Research 9, 1 (2020) 153–157 [Google Scholar]
  5. C. Chen, D. Zhibo, H. Gengkai, Y. Jun: A low-frequency sound absorbing material with subwavelength thickness. Applied Physics Letters 110 (2017) 221903 [CrossRef] [Google Scholar]
  6. Y. Min, C. Shuyu, F. Caixing, S. Ping: Optimal sound-absorbing structures. Materials Horizons 4 (2017) 673–680 [Google Scholar]
  7. W. Yutao, L. Qingxuan, H. Jin, F. Jiaming, C. Tianning: Deep-subwavelength broadband sound absorbing metasurface based on the update finger coiling-up method. Applied Acoustics 195 (2022) 108846 [CrossRef] [Google Scholar]
  8. Y. Zhu, K. Donda, F. Shiwang, C. Liyun, B. Assouar: Broadband ultra-thin acoustic metasurface absorber with coiled structure. Applied Physics Express 12, 11 (2019) 114002 [CrossRef] [Google Scholar]
  9. Y. Wang, H. Zhao, H. Yang, J. Zhong, D. Zhao, Z. Lu, J. Wen: A tunable sound-absorbing metamaterial based on coiled-up space. Journal of Applied Physics 123 (2018) 185109 [Google Scholar]
  10. X. Lei, W. Gongxian, L. Gang, S. Jiahe, D. Zigiang, W. Shengtian: Optimization of hybrid microperforated panel and nonuniform space-coiling channels for broadband low-frequency sound absorption. Applied Acoustics 216 (2024) 109763 [CrossRef] [Google Scholar]
  11. W. Gongxian, L. Gang, X. Lei, Y. Xuewen: Low-frequency broadband absorber with coherent coupling based on perforated panel and space-coiling channels. Journal of Physics D: Applied Physics 56, 49 (2023) 495102 [Google Scholar]
  12. W. Fei, X. Yong, Y. Dianlong, Z. Honggang, W. Yang, W. Jihong: Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels. Applied Physics Letters 114 (2019) 151901 [CrossRef] [Google Scholar]
  13. W. Yang, Z. Honggang, Z. Haibin, Z. Jie, W. Jihong: A space-coiled acoustic metamaterial with tunable low-frequency sound absorption. Europhysics Letters 120, 5 (2018) 54001 [Google Scholar]
  14. T. Zhang, F. Wu, C. Bai, K. An, J. Wang, B. Yang, D. Zhang: Acoustic metamaterial composed of zigzag channel and micro-perforated plate for enhanced low-frequency sound absorption. Journal of Vibration and Control 30, 13, 14 (2024) 2894–2903 [Google Scholar]
  15. S. Ren, Y. Liu, W. Sun, H. Wang, Y. Lei, H. Wang, X. Zeng: Broadband low-frequency sound absorbing metastructures composed of impedance matching coiled-up cavity and porous materials. Applied Acoustics 200 (2022) 109061 [CrossRef] [Google Scholar]
  16. W. Yipu, W. Yonghua, W. Jinkai, Y. Huadong, Z. Chengchun, R. Luguan: Broadband low-frequency sound absorption by coiled-up space embedded in a porous layer. Applied Acoustics 182 (2021) 108226 [CrossRef] [Google Scholar]
  17. Y. Wang, H. Yuan, Y. Wang, J. Xu, H. Yu, C. Zhang, L. Ren: A study on ultra-thin and ultra-broadband acoustic performance of micro-perforated plate coupled with coiled-up space structure. Applied Acoustics 200 (2022) 109048 [CrossRef] [Google Scholar]
  18. L. Qinhao, D. Guoqing: A high-performance sound insulation component for filter capacitors based on coiled-up acoustic metamaterials. Physica Status Solidi A 219, 14 (2022) 2200125 [Google Scholar]
  19. Z. Chi, H. Xinhua: Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Physical Review Applied 6 (2016) 064025 [Google Scholar]
  20. G. Catapane, D. Magliacano, G. Petrone, A. Casaburo, F. Franco, S. De Rosa: Labyrinth resonator design for low-frequency acoustic meta-structures, in: International Conference on Wave Mechanics and Vibrations. Springer International Publishing, Cham, 2022, pp. 681–694 [Google Scholar]
  21. Z. Zhang, F. De Bie, H. Denayer, C. Claeys, W. Desmet, E. Deckers: Optimized metamaterial using quarter-wavelength resonators for broadband acoustic absorption, in: Proceedings of DAGA2021, 2021, pp. 101–104 [Google Scholar]
  22. A.C. De Sousa, E. Deckers, C. Claeys, W. Desmet: On the assembly of archimedean spiral cavities for sound absorption applications: design, optimization and experimental validation. Mechanical Systems and Signal Processing 147 (2021) 107102 [Google Scholar]
  23. G. Jingwen, Z. Xin, F. Yi, Q. Renhao: An extremely-thin acoustic metasurface for low-frequency sound attenuation with a tunable absorption bandwidth. International Journal of Mechanical Sciences 213 (2022) 106872 [Google Scholar]
  24. H. Mingming, W. Junxiang, Y. Skaokun, W. Jiu Hui, M. Fuyin: Expanding the strong absorption band by impedance matched mosquito-coil-like acoustic metamaterials. Review of Scientific Instruments 91 (2020) 025102 [Google Scholar]
  25. I. Prasetiyo, K. Anwar, F. Brahmana, K. Sakagami: Development of stackable subwavelength sound absorber based on coiled-up system. Applied Acoustics 195 (2022) 108842 [CrossRef] [Google Scholar]
  26. S. Gang Yong, C. Qiang, H. Bei, D. Hui Yuan, C. Tie Jun: Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Applied Physics Letters 109 (2016) 131901 [CrossRef] [Google Scholar]
  27. G. Comandini, C. Khodr, V.P. Ting, M. Azarpeyvand, F. Scarpa: Sound absorption in Hilbert fractal and coiled acoustic metamaterials. Applied Physics Letters 120 (2022) 061902 [CrossRef] [Google Scholar]
  28. C. Hongyu, L. Chengtao, H. Haoming: Research on low-frequency noise control based on fractal coiled acoustic metamaterials. Shock and Vibration 2022 (2022) 2083563 [Google Scholar]
  29. Y. Lin, Z. Ruoxi, W. Xiaoxiao, W. Shuxia: Near-perfect low-frequency sound absorption in subwavelength H-fractal metamaterials. Applied Physics Express 16, 8 (2023) 087001 [CrossRef] [Google Scholar]
  30. M. Boccaccio, F. Bucciarelli, G.P.M. Fierro, M. Meo: Microperforated Panel and deep subwavelength Achimedean-inspired spiral cavites for multi-tonal and broadband sound absorption. Applied Acoustics 176 (2021) 107901 [CrossRef] [Google Scholar]
  31. M. Boccaccio, G.P.M. Fierro, F. Bucciarelli, M. Meo: Multi-tonal subwavelength metamaterial for absorption and amplification of acoustic and untrasonic waves. Engineering Research Express 3, 2 (2021) 025024 [CrossRef] [Google Scholar]
  32. L. Qiang, D. Ruizhi, M. Dongxing, W. Xu, L. Yong: A compact broadband absorber based on helical metasurfaces. International Journal of Mechanical Sciences 254 (2023) 108425 [Google Scholar]
  33. G. Nansha, H. Hong: Sound absorption characteristic of micro-helix metamaterial by 3D printing. Theoretical and Applied Mechanics Letters 8, 2 (2018) 63–67 [Google Scholar]
  34. S.H. Xie, X. Fang, P.Q. Li, S. Huang, Y.G. Peng, Y.X. Shen, Y. Li, X.F. Zhu: Tunable double-band perfect absorbers via acoustic metasurfaces with nesting helical tracks. Chinese Physics Letters 37, 5 (2020) 054301 [CrossRef] [Google Scholar]
  35. L. Zixian, L. Jensen: Extreme acoustic metamaterial by coiling up space. Physical Review Letters 108, 11 (2012) 114301 [Google Scholar]
  36. R. Ghaffarivardavagh, J. Nikolajczyk, R. Glynn Holt, S. Anderson, Z. Xin: Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation. Nature Communications 9 (2018) 1349 [Google Scholar]
  37. F. De Bie, H. Denayer, C. Claeys, E. Deckers: Quarter-wavelength acoustic metamaterials: the effect of folding on the resonance frequency, in: Proceedings of ISMA2022-USD2022, 2022, pp. 3054–3065 [Google Scholar]
  38. T. Cambonie, F. Mbailassem, E. Gourdon: Bending a quarter wavelength resonator: curvature effects on sound absorption properties. Applied Acoustics 131 (2018) 87–102 [CrossRef] [Google Scholar]
  39. B.E. Anderson: Understanding radiation impedance through animations. Proceedings of Meetings on Acoustics 33 (2020) 025003 [Google Scholar]
  40. L. Jaouen, F. Chevilotte: Length correction of 2D discontinuities or performations at large wavelengths and for lineair acoustics. Acta Acustica united with Acustica 104, 2 (2018) 243–250 [CrossRef] [Google Scholar]
  41. D.E. Weston: The theory of the propagation of plane sound waves in tubes. Proceedings of the Physical Society. Section B 66, 8 (1953) 695–709 [Google Scholar]
  42. M.R. Stinson: The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. The Journal of the Acoustical Society of America 89 (1991) 550–558 [Google Scholar]
  43. T.G. Zieliński, F. Chevilotte, E. Deckers: Sound absorption of plates with micro-slits backed with air cavities: analytical estimations, numerical calculations and experimental validations. Applied Acoustics 146 (2019) 261–279 [CrossRef] [Google Scholar]
  44. F. De Bie, H. Denayer, C. Claeys, E. Deckers: Experimental validation of the length correction factor for folded quarter-wavelength resonators, in: Proceedings of Forum Acusticum, 2023, pp. 1969–1976 [Google Scholar]
  45. Intent profiles in UltiMaker Cura, https://support.makerbot.com/s/article/1667411132905 [Google Scholar]
  46. ISO 10534-2 standard: Acoustics – determination of acoustic properties in impedance tubes – part 2: two-microphone technique for normal sound absorption coefficient and normal surface impedance, 1998 [Google Scholar]
  47. ISO 5725-6 standard: Accuracy (trueness and precision) of measurement methods and results – part 6: use in practice of accuracy values, 1994 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.