Open Access
Scientific Article

This article has an erratum: [https://doi.org/10.1051/aacus/2022003]


Issue
Acta Acust.
Volume 6, 2022
Article Number 3
Number of page(s) 16
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2021057
Published online 12 January 2022
  1. WHO: Burden of disease from environmental noise: quantification of healthy life years lost, F. Theakston, Ed., World Health Organization, Regional Office for Europe, Copenhagen. 2011. [Google Scholar]
  2. H.M.E. Miedema, C.G. Oudshoorn: Annoyance from transportation noise: Relationships with exposure Metrics DNL and DENL and their confidence intervals. Environmental Health Perspectives 109 (2001) 409–416. [CrossRef] [PubMed] [Google Scholar]
  3. Science for Environment Policy: Future brief: Noise abatement approaches. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol, 2017. Available on the 8th of March 2021 at: http://ec.europa.eu/science-environment-policy . [Google Scholar]
  4. T. Kaczmarek, A. Preis: Annoyance of time-varying road-traffic noise. Archives of Acoustics 35, 3 (2010) 383–393. https://doi.org/10.2478/v10168-010-0032-2. [CrossRef] [Google Scholar]
  5. R. Guski, D. Schreckenberg, R. Schuemer: WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. International Journal of Environmental Research and Public Health 14, 12 (2017) 1539. https://doi.org/10.3390/ijerph14121539. [CrossRef] [Google Scholar]
  6. A. Can, L. Leclercq, J. Lelong, J. Defrance: Capturing urban traffic noise dynamics through relevant descriptors. Applied Acoustics 69, 12 (2008) 1270–1280. https://doi.org/10.1016/j.apacoust.2007.09.006. [CrossRef] [Google Scholar]
  7. P. Lercher, A. Bockstael, B. De Coensel, L. Dekoninck, D. Botteldooren: The application of a notice-event model to improve classical exposure-annoyance estimation. Journal of the Acoustical Society of America 131, 4 (2012) 3223–3223. https://doi.org/10.1121/1.4708019. [CrossRef] [Google Scholar]
  8. S.E. Samuels, J. Parnell: Peak noise events occurring in road traffic noise, in Proceedings of Acoustics 2004, Gold Coast, Australia. 2004. [Google Scholar]
  9. L.A. Gille, C. Marquis-Favre, A. Klein: Noise annoyance due to urban road traffic with powered-two-wheelers: Quiet periods, order and number of vehicles, Acta Acustica United with Acustica 102, 3 (2016) 474–487. https://doi.org/10.3813/AAA.918966. [CrossRef] [Google Scholar]
  10. J.M. Wunderli, R. Pieren, M. Habermacher, D. Vienneau, C. Cajochen, N. Probst-Hensch, M. Röösli, M. Brink: Intermittency ratio: A metric reflecting short-term temporal variations of transportation noise exposure. Journal of Exposure Science & Environmental Epidemiolog 26, 6 (2016) 575–585. https://doi.org/10.1038/jes.2015.56. [CrossRef] [PubMed] [Google Scholar]
  11. M. Brink, B. Schäffer, D. Vienneau, M. Foraster, R. Pieren, I.C. Eze, C. Cajochen, N. Probst-Hensch, M. Röösli, J.M. Wunderli: A survey on exposure-response relationships for road, rail, and aircraft noise annoyance: Differences between continuous and intermittent noise. Environment International 125 (2019) 277–290. [CrossRef] [PubMed] [Google Scholar]
  12. J. Haubrich, S. Benz, M. Brink, R. Guski, U. Isermann, B. Schäffer, R. Schmid, D. Schreckenberg, J.M. Wunderli: Leq + X: Re-Assessment of exposure-response relationships for aircraft noise annoyance and disturbances to improve explained variance, in Proceedings of the ICA, 23rd International Congress on Acoustics, Aachen, Germany. 2019. [Google Scholar]
  13. H. Héritier, D. Vienneau, M. Foraster, I. Collins Eze, E. Schaffner, L. Thiesse, F. Rudzik, M. Habermacher, M. Köpfli, R. Pieren, M. Brink, C. Cajochen, J.M. Wunderli, N. Probst-Hensch, M. Röösli: Transportation noise exposure and cardiovascular mortality: A nationwide cohort study from Switzerland. European Journal of Epidemiology 32, 4 (2017) 307–315. https://doi.org/10.1007/s10654-017-0234-2. [CrossRef] [PubMed] [Google Scholar]
  14. M. Brink, P. Lercher, A. Eisenmann, C. Schierz: Influence slope of of rise and event order of aircraft noise events on high resolution actimetry parameters. Somnologie 12 (2008) 118–128. https://doi.org/10.1007/s11818-008-0345-9. [CrossRef] [Google Scholar]
  15. R. Guski, U. Felscher-Suhr, R. Schuemer: The concept of noise annoyance: How international experts see it. Journal of Sound and Vibration 223, 4 (1999) 513–527. https://doi.org/10.1006/jsvi.1998.2173. [Google Scholar]
  16. D. Ouis: Annoyance from Road Traffic noise. Journal of Environmental Psychology 21, 1 (2001) 101–120. https://doi.org/10.1006/jevp.2000.0187. [CrossRef] [Google Scholar]
  17. K. Paunović, B. Jakovljević, G. Belojević: Predictors of noise annoyance in noisy and quiet urban streets. Science of the Total Environment 407, 12 (2009) 3707–3711. https://doi.org/10.1016/j.scitotenv.2009.02.033. [CrossRef] [Google Scholar]
  18. H.M.E. Miedema: Annoyance caused by environmental noise: Elements for evidence-based noise policies. Journal of Social Issues 63, 1 (2007) 41–57. https://doi.org/10.1111/j.1540-4560.2007.00495.x. [CrossRef] [Google Scholar]
  19. P. Lercher: Noise in cities: Urban and transport planning determinants and health in cities, in Integrating Human Health into Urban and Transport Planning, M. Nieuwenhuijsen, H. Khreis, Eds., Springer International Publishing, Cham. 2019, pp. 443–481. [CrossRef] [Google Scholar]
  20. S. Versümer, J. Steffens, P. Blättermann, J. Becker-Schweitzer: Modeling evaluations of low-level sounds in everyday situations using linear machine learning for variable selection. Frontiers in Psychology 11 (2020) 2593. Available on the 8th of March 2021 at https://www.frontiersin.org/article/10.3389/fpsyg.2020.570761 . [Google Scholar]
  21. D. Schreckenberg, C. Belke, J. Spilski: The development of a multiple-item annoyance scale (MIAS) for transportation noise annoyance. International Journal of Environmental Research and Public Health 15 (2018) 971. https://doi.org/10.3390/ijerph15050971. [CrossRef] [Google Scholar]
  22. M.R. Vasilev, J.A. Kirkby, B. Angele: Auditory distraction during reading: A Bayesian meta-analysis of a continuing controversy. Perspectives on Psychological Science 13, 5 (2018) 567–597. https://doi.org/10.1177/1745691617747398. [CrossRef] [PubMed] [Google Scholar]
  23. J.L. Szalma, P.A. Hancock: Noise effects on human performance: A meta-analytic synthesis. Psychological Bulletin 137, 4 (2011) 682–707. https://doi.org/10.1037/a0023987. [CrossRef] [PubMed] [Google Scholar]
  24. J.R. Wessel, A.R. Aron: Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects. Journal of Neuroscience 33, 47 (2013) 18481–18491. https://doi.org/10.1523/JNEUROSCI.3456-13. [CrossRef] [PubMed] [Google Scholar]
  25. R. Dedieu, C. Lavandier, C. Camier, S. Berger: Evaluation du confort acoustique en logement résidentiel : Description du système de reproduction sonore adapté aux expériences perceptives envisagées, in Proceedings of the French Congress of Acoustics, Le Havre. 2018. [Google Scholar]
  26. V. Pulkki: Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 45, 6 (1997) 456–466. [Google Scholar]
  27. M. Rossignol, G. Lafay, M. Lagrange, N. Misdariis: SimScene: A web-based acoustic scenes simulator, in Proceedings of the Web Audio Conference, IRCAM, Paris France. 2014. [Google Scholar]
  28. J. Terroir, C. Lavandier: Perceptual impact of distance on high-speed train sound quality. Acta Acustica United with Acustica 100, 2 (2014) 328–340. https://doi.org/10.3813/AAA.918712. [CrossRef] [Google Scholar]
  29. A. Pate, C. Lavandier, A. Minard, I. Le Griffon: Perceived unpleasantness of aircraft flyover noise: Influence of temporal parameters. Acta Acustica United with Acustica 103 (2017) 34–47. https://doi.org/10.3813/AAA.919031. [CrossRef] [Google Scholar]
  30. S. Guéraud, C. Royer: On-line investigations of inference production in skilled and less-skilled ten years old children, in 26th Annual Meeting of the Society for Text and Discourse, Kassel, Germany. 2016. [Google Scholar]
  31. H. Guinet, C. Royer, H. Labat, S. Guéraud: Inferential processes in 8 to 10 years old children. New factors which may explain development, in 22th Annual Meeting of Society for the Scientific Study of Reading, Newport Beach (USA). 2020. [postponed to 2022]. [Google Scholar]
  32. M. Schutte, S. Sandrock, B. Griefahn: Factorial validity of the noise sensitivity questionnaire. Noise Health 9, 37 (2007) 96–100. https://doi.org/10.4103/1463-1741.37425. [CrossRef] [PubMed] [Google Scholar]
  33. B. Griefahn: Determination of noise sensitivity within an internet survey using a reduced version of the noise sensitivity questionnaire. Journal of the Acoustical Society of America 123, 5 (2008) 3449. [CrossRef] [Google Scholar]
  34. W.H. Kruskal, W.A. Wallis: Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 260 (1952) 583–621. https://doi.org/10.2307/2280779. [CrossRef] [Google Scholar]
  35. D.F. Bauer: Constructing confidence sets using rank statistics. Journal of the American Statistical Association 67, 339 (1972) 687–690. https://doi.org/10.1080/01621459.1972.10481279. [CrossRef] [Google Scholar]
  36. M. Hollander, W. Douglas: Nonparametric Statistical Methods. John Wiley and Sons, New York, 1973, pp. 139–146. [Google Scholar]
  37. P. Nemenyi: Distribution-free Multiple Comparisons. PhD Dissertation, Princeton University, 1963. [Google Scholar]
  38. J.J. Hox: Multilevel Analysis: Techniques and Applications. Second edition, Routledge, New York, 2010. [CrossRef] [Google Scholar]
  39. T.A. Van Dijk, W. Kintsch: Strategies of Discourse Comprehension. Academic Press, New York, 1983. [Google Scholar]
  40. D. Bates, M. Malcher, B. Bolker, S. Walker: Fitting linear mixed-effect models using lme4. Journal of Statistical Software 67 (2015) 1–48. [CrossRef] [Google Scholar]
  41. A. Trollé, C. Marquis-Favre, A. Klein: Short-term annoyance due to tramway noise: Determination of an acoustical indicator of annoyance via multilevel regression analysis. Acta Acustica United with Acustica 100, 1 (2015) 34–45. https://doi.org/10.3813/AAA.918684. Corrigendum to short-term annoyance due to tramway noise: Determination of an acoustical indicator of annoyance via multilevel regression analysis, Acta Acustica United with Acustica, 101(1): 205–205, 2015. https://doi.org/10.3813/AAA.918819 . [Google Scholar]
  42. L.A. Gille, C. Marquis-Favre, R. Weber: Aircraft noise annoyance modeling: Consideration of noise sensitivity and of different annoying acoustical characteristics. Applied Acoustics 115 (2017) 139–149. https://doi.org/10.1016/j.apacoust.2016.08.022. [CrossRef] [Google Scholar]
  43. S. Kurra, M. Morimoto, Z.I. Maekawa: Transportation noise annoyance – A simulated environment study for road, railway and aircraft noises, Part 2: Activity disturbance and combined results. Journal of Sound and Vibration 220, 2 (1999) 279–295. [CrossRef] [Google Scholar]
  44. S. Kuhnt, C. Schürmann, M. Schütte, E. Wenning, B. Griefahn, M. Vormann: Modelling annoyance from combined traffic noises: An experimental study. Acta Acustica United with Acustica 94, 3 (2008) 393–400. https://doi.org/10.3813/AAA.918047. [CrossRef] [Google Scholar]
  45. J.F. Park, M.C. Payne: Effects of noise level and difficulty of task in performing division. Journal of Applied Psychology 47, 6 (1963) 367–368. https://doi.org/10.1037/h0048773. [CrossRef] [Google Scholar]
  46. A. Trollé, J. Terroir, C. Lavandier, C. Marquis-Favre, M. Lavandier: Impact of urban road traffic on sound unpleasantness: A comparison of traffic scenarios at crossroads. Applied Acoustics 94 (2015) 46–52. https://doi.org/10.1016/j.apacoust.2015.02.008. [CrossRef] [Google Scholar]
  47. J.J. Walczyk: The interplay between automatic and control processes in reading. Reading Research Quarterly 35, 4 (2000) 554–566. [CrossRef] [Google Scholar]
  48. W. Schneider, R.M. Shiffrin: Controlled and automatic human information processing: Detection, search, and attention. Psychological Review 84, 1 (1977) 1–66. https://doi.org/10.1037/0033-295X.84.1.1. [CrossRef] [Google Scholar]
  49. M.T.H. Chi: Two approaches to the study of experts’ characteristics, in The Cambridge Handbook of Expertise and Expert Performance, K.A. Ericsson, N. Charness, P.J. Feltovitch, R.R. Hoffman, Eds., Cambridge University Press, Cambridge, UK. 2006. [Google Scholar]
  50. V. Hongisto, D. Oliva, L. Rekola: Subjective and objective rating of spectrally different pseudorandom noises – Implications for speech masking design. Journal of Acoustical Society of America 137, 3 (2015) 1344–1355. https://doi.org/10.1121/1.4913273. [CrossRef] [PubMed] [Google Scholar]
  51. Arrêté du 30 juin 1999 relatif aux caractéristiques acoustiques des bâtiments d’habitation, (French order relating to the acoustic characteristics of residential buildings). 1999. [Google Scholar]
  52. M. Chitwood, K. Vaughn: Cognitive performance and sounds: The effects of lyrical music and pink noise on performance. The NKU Journal of Student Research 1 (2018) 9–14. [Google Scholar]
  53. B. De Coensel, D. Botteldooren, B. Berglund, M. Nilsson, T. De Muer, P. Lercher: Experimental investigation of noise annoyance caused by high-speed trains. Acta Acustica United with Acustica 93 (2007) 589–601. [Google Scholar]
  54. T. Kaczmarek, A. Preis: Annoyance of time-varying road-traffic noise. Archives of Acoustics 35, 3 (2010) 383–393. [CrossRef] [Google Scholar]
  55. J. Morel, C. Marquis-Favre, D. Dubois, M. Pierrette: Road traffic in urban areas: A perceptual and cognitive typology of pass-by noises. Acta Acustica United with Acustica 98, 1 (2012) 166–178. https://doi.org/10.3813/AAA.918502. [CrossRef] [Google Scholar]
  56. J. Vogt: The relative impact of aircraft noise and number in a full factorial laboratory design. Journal of Sound and Vibration 282 (2005) 1085–1100. [CrossRef] [Google Scholar]
  57. J. Klingner: Measuring cognitive load during visual tasks by combining pupillometry and eye tracking. Dissertation in partial fulfillment of the requirements for the degree of doctor of philosophy, 2010, p. 116. [Google Scholar]
  58. A.A. Zekveld, T. Koelewijn, S.E. Kramer: The pupil dilation response to auditory stimuli: Current state of knowledge. Trends in Hearing 22 (2018). https://doi.org/10.1177/2331216518777174. [CrossRef] [Google Scholar]
  59. J. Lambert, P. Champelovier, R. Blanchet, C. Lavandier, J. Terroir, F. Marki, B. Griefhan, U. Iemma, K. Janssen, R. Bisping: Human response to simulated airport nois scenarios in home-like environments. Applied Acoustics 90, 1 (2015) 116–125. [CrossRef] [Google Scholar]
  60. S. Kurra, M. Morimoto, Z.I. Maekawa: Transportation noise annoyance – A simulated environment study for road, railway and aircraft noises, part 1: Overall annoyance. Journal of Sound and Vibration 220, 2 (1999) 251–278. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.