Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 53
Number of page(s) 18
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2022047
Published online 16 November 2022
  1. C.D. Marchant, P.A. Shurin, V.A. Turczyk, D.E. Wasikowski, M.A. Tutihasi, S.E. Kinney: Course and outcome of otitis media in early infancy: A prospective study. The Journal of Pediatrics 104, 6 (1984) 826–831. https://doi.org/10.1016/s0022-3476(84)80475-8. [CrossRef] [PubMed] [Google Scholar]
  2. J.L. Paradise, H.E. Rockette, D.K. Colborn, B.S. Bernard, C.G. Smith, M. Kurs-Lasky, J.E. Janosky: Otitis media in 2253 pittsburgh-area infants: Prevalence and risk factors during the first two years of life. Pediatrics 99, 3 (1997) 318–333. https://doi.org/10.1542/peds.99.3.318. [CrossRef] [PubMed] [Google Scholar]
  3. M.P. Feeney, L.L. Hunter, J. Kei, D.J. Lilly, R.H. Margolis, H.H. Nakajima, S.T. Neely, B.A. Prieve, J.J. Rosowski, C.A. Sanford, K.S. Schairer, N. Shahnaz, S. Stenfelt, S.E. Voss: Consensus statement. Ear and Hearing 34, Supplement 1 (2013) 78s–79s. https://doi.org/10.1097/aud.0b013e31829c726b. [CrossRef] [PubMed] [Google Scholar]
  4. D.H. Keefe, J.C. Bulen, K.H. Arehart, E.M. Burns: Ear-canal impedance and reflection coefficient in human infants and adults. The Journal of the Acoustical Society of America 94, 5 (1993) 2617–2638. https://doi.org/10.1121/1.407347. [CrossRef] [PubMed] [Google Scholar]
  5. D.H. Keefe, R.C. Folsom, M.P. Gorga, B.R. Vohr, J.C. Bulen, S.J. Norton: Identification of neonatal hearing impairment: ear-canal measurements of acoustic admittance and reflectance in neonates. Ear and Hearing 21, 5 (2000) 443–461. [CrossRef] [PubMed] [Google Scholar]
  6. C.A. Sanford, M.P. Feeney: Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. The Journal of the Acoustical Society of America 124, 4 (2008) 2106–2122. https://doi.org/10.1121/1.2967864. [CrossRef] [PubMed] [Google Scholar]
  7. C.A. Sanford, D.H. Keefe, Y.-W. Liu, D. Fitzpatrick, R.W. McCreery, D.E. Lewis, M.P. Gorga: Soundconduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry. Ear and hearing 30, 6 (2009) 635–652. https://doi.org/10.1097/AUD. 0b013e3181b61cdc. [CrossRef] [PubMed] [Google Scholar]
  8. L.A. Werner, E.C. Levi, D.H. Keefe: Ear-canal wideband acoustic transfer functions of adults and two-to nine-month-old infants. Ear and Hearing 31, 5 (2010) 587–598. https://doi.org/10.1097/aud.0b013e3181e0381d. [CrossRef] [PubMed] [Google Scholar]
  9. S. Aithal, J. Kei, C. Driscoll, A. Khan, A. Swanston: Wideband absorbance outcomes in newborns: A comparison with high-frequency tympanometry, automated brainstem response, and transient evoked and distortion product otoacoustic emissions. Ear and Hearing 36, 5 (2015) e237–e250. https://doi.org/10.1097/AUD.0000000000000175. [CrossRef] [PubMed] [Google Scholar]
  10. C.M. Blankenship, L.L. Hunter, D.H. Keefe, M.P. Feeney, D.K. Brown, A. McCune, D.F. Fitzpatrick, L. Lin: Optimizing clinical interpretation of distortion product otoacoustic emissions in infants. Ear & Hearing 39, 6 (2018) 1075–1090. https://doi.org/10.1097/aud.0000000000000562. [CrossRef] [PubMed] [Google Scholar]
  11. J. Pitaro, L. Al Masaoudi, H. Motallebzadeh, W.R.J. Funnell, S.J. Daniel: Wideband reflectance measurements in newborns: Relationship to otoscopic findings. International Journal of Pediatric Otorhinolaryngology 86 (2016) 156–160. https://doi.org/10.1016/j.ijporl.2016.04.036. [CrossRef] [PubMed] [Google Scholar]
  12. B.A. Prieve, K.R. Vander Werff, J.L. Preston, L. Georgantas: Identification of conductive hearing loss in young infants using tympanometry and wideband reflectance. Ear and Hearing 34, 2 (2013) 168–178. https://doi.org/10.1097/aud.0b013e31826fe611. [CrossRef] [PubMed] [Google Scholar]
  13. N. Shahnaz, A. Cai, L. Qi: Understanding the developmental course of the acoustic properties of the human outer and middle ear over the first 6 months of life by using a longitudinal analysis of power reflectance at ambient pressure. Journal of the American Academy of Audiology 25, 5 (2014) 495–511. https://doi.org/10.3766/jaaa.25.5.8. [CrossRef] [PubMed] [Google Scholar]
  14. J. Zwislocki: Analysis of the middle-ear function. Part I: Input impedance. The Journal of the Acoustical Society of America 34, 8 (1962) 1514–1523. https://doi.org/10.1121/1.1918382. [CrossRef] [Google Scholar]
  15. E.A.G. Shaw, R. Teranishi: Sound pressure generated in an external-ear replica and real human ears by a nearby point source. The Journal of the Acoustical Society of America 44, 1 (1968) 240–249. https://doi.org/10.1121/1.1911059. [CrossRef] [PubMed] [Google Scholar]
  16. M. Kringlebotn: Network model for the human middle ear. Scandinavian Audiology 17, 2 (1988) 75–85. https://doi.org/10.3109/01050398809070695. [CrossRef] [PubMed] [Google Scholar]
  17. C.A. Shera, G. Zweig: Middle-ear phenomenology: The view from the three windows. The Journal of the Acoustical Society of America 92, 3 (1992) 1356–1370. https://doi.org/10.1121/1.403929. [CrossRef] [PubMed] [Google Scholar]
  18. H. Hudde, A. Engel: Measuring and modeling basic properties of the human middle ear and ear canal. Part I: Model structure and measuring techniques. ACUSTICA/acta acustica 84, 4 (1998) 720–738. [Google Scholar]
  19. H. Hudde, A. Engel: Measuring and modeling basic properties of the human middle ear and ear canal. Part II: Ear canal, middle ear cavities, eardrum, and ossicles. ACUSTICA/acta acustica 84, 5 (1998) 894–913. [Google Scholar]
  20. H. Hudde, A. Engel: Measuring and modeling basic properties of the human middle ear and ear canal. Part III: Eardrum impedances, transfer functions and model calculations. ACUSTICA/acta acustica 84, 6 (1998) 1091–1108. [Google Scholar]
  21. D.H. Keefe: Human middle-ear model with compound eardrum and airway branching in mastoid air cells. The Journal of the Acoustical Society of America 137, 5 (2015) 2698–2725. https://doi.org/10.1121/1.4916592. [CrossRef] [PubMed] [Google Scholar]
  22. M. Blau, T. Sankowsky, P. Roeske, H. Mojallal, M. Teschner, C. Thiele: Prediction of the sound pressure at the ear drum in occluded human cadaver ears. Acta Acustica united with Acustica 96, 3 (2010) 554–566. [CrossRef] [Google Scholar]
  23. T. Sankowsky-Rothe, M. Blau, S. Köhler, A. Stirnemann: Individual equalization of hearing aids with integrated ear canal microphones. Acta Acustica united with Acustica 101, 3 (2015) 552–566. https://doi.org/10.3813/AAA.918852. [CrossRef] [Google Scholar]
  24. T. Sankowsky-Rothe, M. Blau, E. Rasumow, H. Mojallal, M. Teschner, C. Thiele: Prediction of the sound pressure at the ear drum in occluded human ears. Acta Acustica united with Acustica 97, 4 (2011) 656–668. https://doi.org/10.3813/AAA.918445. [CrossRef] [Google Scholar]
  25. M. Blau, M. Bornitz, T. Zahnert, G. Hofmann, K.B. Hüttenbrink: Entwicklung eines implantierbaren Mikrofons zum Einsatz in Cochlea-Implantaten und implantierbaren Hörgeräten, BMBF-Forschungsbericht. Bundesministerium für Bildung und Forschung, Research rep. TIB Hannover (2003) 1–49. https://www.tib.eu/de/suchen/id/tema%3ATEMA20040703524. [Google Scholar]
  26. J.J. Rosowski, P.J. Davis, S.N. Merchant, K.M. Donahue, M.D. Coltrera: Cadaver middle ears as models for living ears: Comparisons of middle ear input immittance. Annals of Otology, Rhinology and Laryngology 99, 5 Pt 1 (1990) 403–412. [CrossRef] [PubMed] [Google Scholar]
  27. T. Sankowsky-Rothe: Parametric model of young infants’ eardrum and ear canal acoustic input impedances (version v1.0) [Code]. (2022). URL: https://github.com/tobiassankowsky/acoustic_impedance_infant_ear. [Google Scholar]
  28. A.H. Benade: On the propagation of sound waves in a cylindrical conduit. The Journal of The Acoustical Society of America 44, 2 (1968) 616–623. https://doi.org/10.1121/1.1911130. [CrossRef] [Google Scholar]
  29. C. Abdala, D.H. Keefe: Morphological and functional ear development, in Human Auditory Development, Springer, New York, 2011, pp. 19–59. https://doi.org/10.1007/978-1-4614-1421-6_2. [Google Scholar]
  30. J. Fels, J. Paprotny: Ear canal properties of children: Dimensions of ear canals and simulation of the input impedance. Acta Acustica united with Acustica 99, 4 (2013) 582–589. https://doi.org/10.3813/AAA.918637. [CrossRef] [Google Scholar]
  31. D.H. Keefe, J.C. Bulen, S.L. Campbell, E.M. Burns: Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal. The Journal of the Acoustical Society of America 95, 1 (1994) 355–371. https://doi.org/10.1121/1.408380. [CrossRef] [PubMed] [Google Scholar]
  32. M. McLellan, C. Webb: Ear studies in the newborn infant. The Journal of Pediatrics 51, 6 (1957) 672–677. https://doi.org/10.1016/s0022-3476(57)80102-4. [CrossRef] [PubMed] [Google Scholar]
  33. L. Holte, R.M. Cavanaugh, R.H. Margolis: Ear canal wall mobility and tympanometric shape in young infants. The Journal of pediatrics 117, 1 Pt 1 (1990) 77–80. [CrossRef] [PubMed] [Google Scholar]
  34. H. Motallebzadeh, N. Maftoon, J. Pitaro, W.R.J. Funnell, S.J. Daniel: Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear. Journal of the Association for Research in Otolaryngology : JARO 18 (2017) 25–48. https://doi.org/10.1007/s10162-016-0587-3. [CrossRef] [PubMed] [Google Scholar]
  35. A. Ikui, I. Sando, S.-I. Haginomori, M. Sudo: Postnatal development of the tympanic cavity: A computer aided reconstruction and measurement study. Acta Oto-Laryngologica 120, 3 (2000) 375–379. https://doi.org/10.1080/000164800750000595. [CrossRef] [PubMed] [Google Scholar]
  36. L. Qi, W.R.J. Funnell, S.J. Daniel: A nonlinear finiteelement model of the newborn middle ear. The Journal of the Acoustical Society of America 124, 1 (2008) 337–347. https://doi.org/10.1121/1.2920956. [CrossRef] [PubMed] [Google Scholar]
  37. S. Mansour, J. Magnan, H. Haidar, K. Nicolas, S. Louryan: Comprehensive and clinical anatomy of the middle ear, 1st ed., Springer-Verlag, Berlin Heidelberg. 2013. https://doi.org/10.1007/978-3-642-36967-4. [CrossRef] [Google Scholar]
  38. A. Lenk: Elektromechanische Systeme Band 2. Systeme mit verteilten Parametern, VEB Verlag Technik, Berlin, 1977. [Google Scholar]
  39. C.B. Ruah, P.A. Schachern, D. Zelterman, M.M. Paparella, T.H. Yoon: Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Archives of Otolaryngology– Head & Neck Surgery 117, 6 (1991) 627–634. https://doi.org/10.1121/1.2920956. [CrossRef] [PubMed] [Google Scholar]
  40. J. Olszewski: The morphometry of the ear ossicles in humans during development. Anatomischer Anzeiger 171, 3 (1990) 187–191. [PubMed] [Google Scholar]
  41. T. Sankowsky-Rothe, A. Becker, K. Plotz, R. Schönfeld, A. Radeloff, S. Van de Par, M. Blau: Acoustic input impedance of infants with normal and pathological middle ear, in Proceedings of the ICA 2019 and EAA Euroregio. 23rd International Congress on Acoustics, integrating 4th EAA Euroregio 2019 (Sept. 2019), Aachen, Germany, 2019. ISBN: 978-3-93929615-7. [Google Scholar]
  42. A. Stirnemann: Ein Mittelohrmodell basierend auf der Außenohr Transferimpedanz, in Fortschritte der Akustik DAGA 2011, DEGA, 2011. [Google Scholar]
  43. IEC-60318-4: Electroacoustics – simulators of human head and ear – part 4: Occluded-ear simulator for the measurement of earphones coupled to the ear by ear inserts, International Electrotechnical Organisation Standard, 2007. [Google Scholar]
  44. A. Stirnemann, H. Graf, H. Meier: Akustische Impedanzmessungen in der Hörgerätetechnik, in Fortschritte der Akustik DAGA 2003, DEGA, Berlin, 2003, pp. 496–497. [Google Scholar]
  45. L. Qi, H. Liu, J. Lutfy, W.R.J. Funnell, S.J. Daniel: A nonlinear finite-element model of the newborn ear canal. The Journal of the Acoustical Society of America 120, 6 (2006) 3789–3798. https://doi.org/10.1121/1.2363944. [CrossRef] [PubMed] [Google Scholar]
  46. H. Motallebzadeh, N. Maftoon, J. Pitaro, W.R.J. Funnell, S.J. Daniel: Fluid-structure finite-element modelling and clinical measurement of the wideband acoustic input admittance of the newborn ear canal and middle ear. Journal of the Association for Research in Otolaryngology 18, 5 (2017) 671–686. https://doi.org/10.1007/s10162-017-0630-z. [CrossRef] [PubMed] [Google Scholar]
  47. T. Sankowsky-Rothe, S. van de Par, M. Blau: Parametric model of young infants’ eardrum and ear canal impedances supporting immittance measurement results. Part II: Prediction of eardrum and ear canal impedances for common middle ear pathologies. Acta Acustica (submitted to 2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.