Issue
Acta Acust.
Volume 7, 2023
Topical Issue - CFA 2022
Article Number 40
Number of page(s) 16
DOI https://doi.org/10.1051/aacus/2023033
Published online 14 August 2023
  1. T. Carpentier, A. Einbond: Spherical correlation as a similarity measure for 3D radiation patterns of musical instruments, in: 16th Congrès Français d’Acoustique (CFA), Marseille, France, April, 2022. https://openaccess.city.ac.uk/id/eprint/28202/ [Google Scholar]
  2. J. Meyer: Acoustics and the performance of music – manual for acousticians, audio engineers, musicians, architects and musical instruments makers, 5th edn., Springer, 2009. [Google Scholar]
  3. J. Pätynen, T. Lokki: Directivities of symphony orchestra instruments. Acta Acustica united with Acustica 96 (2010) 138–167. [CrossRef] [Google Scholar]
  4. O. Warusfel, P. Derogis, R. Caussé: Radiation synthesis with digitally controlled loudspeakers, in 103rd Convention of the Audio Engineering Society, New York, September 1997. [Google Scholar]
  5. F. Zotter: Analysis and synthesis of sound-radiation with spherical arrays. PhD thesis. IEM, Graz, Austria, 2009. [Google Scholar]
  6. F. Otondo, J.H. Rindel: The influence of the directivity of musical instruments in a room. Acta Acustica united with Acustica 90 (2004) 1178–1184. [Google Scholar]
  7. M. Vorländer: Auralization fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality, Springer, Berlin, 2008. [Google Scholar]
  8. L.M. Wang, M.C. Vigeant: Evaluations of output from room acoustic computer modeling and auralization due to different sound source directionalities. Applied Acoustics 69, 12 (2008) 1281–1293. [CrossRef] [Google Scholar]
  9. M. Noisternig, F. Zotter, B.F.G. Katz: Reconstructing sound source directivity in virtual acoustic environments, in: Y. Suzuki, D. Brungart, H. Kato, Eds. Principles and applications of spatial hearing, World Scientific Press, 2011, pp. 357–373. [CrossRef] [Google Scholar]
  10. G. Peeters, S. McAdams, P. Herrera: Instrument sound description in the context of MPEG-7, in: International Computer Music Conference, Berlin, Germany, 2000, pp. 166–169. [Google Scholar]
  11. M. Muller, D.P.W. Ellis, A. Klapuri, G. Richard: Signal processing for music analysis. IEEE Journal of Selected Topics in Signal Processing 5, 6 (2011) 1088–1110. [CrossRef] [Google Scholar]
  12. G. Richard, S. Sundaram, S. Narayanan: An overview on perceptually motivated audio indexing and classification. IEEE 101, 9 (2013) 1939–1954. [CrossRef] [Google Scholar]
  13. D. Schwarz: Corpus-based concatenative synthesis. IEEE Signal Processing Magazine 24, 2 (2007) 92–104. [CrossRef] [Google Scholar]
  14. D. Schwarz, S. Britton, R. Cahen, T. Goepfer: Musical applications of real-time corpus-based concatenative synthesis, in: International Computer Music Conference (ICMC), Copenhagen, Denmark, 2007, pp. 47–50. [Google Scholar]
  15. G. Peeters, B.L. Giordano, P. Susini, N. Misdariis, S. McAdams: The Timbre Toolbox: Extracting audio descriptors from musical signals. Journal of the Acoustical Society of America 130, 5 (2011) 2902–2916. [CrossRef] [PubMed] [Google Scholar]
  16. A. Einbond, D. Schwarz: Spatializing timbre with corpus-based concatenative synthesis, in: International Computer Music Conference (ICMC), New York, NY, USA, 2010. [Google Scholar]
  17. A. Einbond: Mapping the klangdom live: Cartographies for piano with two performers and electronics. Computer Music Journal 41, 1 (2017) 61–75. [CrossRef] [Google Scholar]
  18. A. Einbond, J. Bresson, D. Schwarz, T. Carpentier: Instrumental radiation patterns as models for corpus-based spatial sound synthesis: Cosmologies for Piano and 3D Electronics In: International Computer Music Conference, Santiago, Chile, July, 2021, pp. 148–153. [Google Scholar]
  19. R.K. Cook, R.V. Waterhouse, R.D. Berendt, S. Edelman, M.C. Thompson: Measurement of correlation coefficients in reverberant sound fields. Journal of the Acoustical Society of America 27, 6 (1955) 1072–1077. [CrossRef] [Google Scholar]
  20. S. Moreau: Étude et réalisation d’outils avancés d’encodage spatial pour la technique de spatialisation sonore Higher Order Ambisonics: microphone 3D et contrôle de distance. PhD thesis, Université du Maine, 2006. [Google Scholar]
  21. S. Moreau, J. Daniel, S. Bertet: 3D sound field recording with higher order ambisonics – objective measurements and validation of a 4th order spherical microphone, in: 120th Convention of the Audio Engineering Society (AES), Paris, France, May 20–23, 2006. [Google Scholar]
  22. M. Pollow: Directivity Patterns for Room Acoustical Measurements and Simulations. PhD thesis, RWTH Aachen University, 2015. [Google Scholar]
  23. R. Sridhar, J.G. Tylka, E.Y. Choueiri: Generalized metrics for constant directivity. Journal of the Audio Engineering Society 67, 9 (2019) 666–678. [CrossRef] [Google Scholar]
  24. E.G. Williams: Fourier acoustics: sound radiation and nearfield acoustical holography. Academic Press, 1999. [Google Scholar]
  25. D. Ackermann, F. Brinkmann, F. Zotter, M. Kob, S. Weinzierl: Comparative evaluation of interpolation methods for the directivity of musical instruments. EURASIP Journal on Audio, Speech, and Music 36 (2021) 1–14. [Google Scholar]
  26. M. Pollow, K. Van Nguyen, O. Warusfel, T. Carpentier, M. Müller-Trapet, M. Vorländer, M. Noisternig: Calculation of head-related transfer functions for arbitrary field points using spherical harmonics decomposition. Acta Acustica united with Acustica 98 (2012) 72–82. [CrossRef] [Google Scholar]
  27. S. Pelzer, M. Pollow, M. Vorländer: Auralization of virtual orchestra using directivities of measured symphonic instruments, in: Acoustics 2012, Nantes, France, April, 2012. [Google Scholar]
  28. M. Kazhdan, T. Funkhouser: Harmonic 3D shape matching, in: ACM SIGGRAPH Conference Abstracts and Applications, New York, 2002, p. 191. [Google Scholar]
  29. M. Kazhdan, T. Funkhouser, S. Rusinkiewicz: Rotation invariant spherical harmonic representation of 3D shape descriptors. Eurographics Symposium on Geometry Processing, June, 2003, pp. 167–175. [Google Scholar]
  30. M. Kazhdan, T. Funkhouser, S. Rusinkiewicz: Symmetry descriptors and 3D shape matching, in: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, New York, 2004, pp. 115–123. [Google Scholar]
  31. L. Sorgi, K. Daniilidis: Normalized cross-correlation for spherical images, in: T. Pajdla, J. Matas, Eds. Computer Vision – ECCV 2004, Springer, Berlin, 2004, pp. 542–553. [CrossRef] [Google Scholar]
  32. L. Shen, H. Huang, F. Makedon, A.J. Saykin: Efficient registration of 3D SPHARM surfaces, in: Canadian Conference on Computer and Robot Vision, Montreal, May 2007, pp. 81–88. [Google Scholar]
  33. B. Gutman, Y. Wang, T. Chan, P.M. Thompson, A.W. Toga, Shape registration with spherical cross correlation, in: X. Pennec Ed. 2nd Workshop on Mathematical Foundations of Computational Anatomy, New York, USA, 2008, pp. 56–67. [Google Scholar]
  34. P.J. Kostelec, D.N. Rockmore: FFTs on the rotation group. Journal of Fourier Analysis and Applications 14 (2008) 145–179. [CrossRef] [Google Scholar]
  35. J.R. Driscoll, D.M. Healy: Computing fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 15, 2 (1994) 202–250. [CrossRef] [Google Scholar]
  36. B. Rafaely: Fundamentals of spherical array processing, 2nd edn., Springer-Verlag, 2019. [CrossRef] [Google Scholar]
  37. P. Guillon: Individualisation des indices spectraux pour la synthèse binaurale: recherche et exploitation des similarités inter-individuelles pour l’adaptation ou la reconstruction de HRTF. PhD thesis, Université du Maine, 2009. [Google Scholar]
  38. P. Guillon, R. Nicol: Head-Related Transfer Function reconstruction from sparse measurements considering a priori knowledge from database analysis: a pattern recognition approach, in: 125th Convention of the Audio Engineering Society (AES), San Francisco, October, 2008. [Google Scholar]
  39. D. Deboy, F. Zotter: Acoustic center and orientation analysis of sound-radiation recorded with a surrounding spherical microphone array, in: 2nd International Symposium on Ambisonics and Spherical Acoustics, Paris, France, May, 2010. [Google Scholar]
  40. M. Pezzoli, A. Canclini, F. Antonacci, A. Sarti: A comparative analysis of the directional sound radiation of historical violins. Journal of the Acoustical Society of America 152, 1 (2022) 354–367. [CrossRef] [PubMed] [Google Scholar]
  41. F. Hohl, F. Zotter: Similarity of musical instrument radiation-patterns in pitch and partial, in: Fortschritte der Akustik (DAGA), Berlin, Germany, March, 2010. [Google Scholar]
  42. F. Otondo, J.H. Rindel, R. Causse, N. Misdariis, P. de la Cuadra: Directivity of musical instruments in a real performance situation, in: International Symposium on Musical Acoustics (ISMA), Mexico City, 2002, pp. 230–232. [Google Scholar]
  43. F. Otondo, J.H. Rindel: A new method for the radiation representation of musical instruments in auralizations. Acta Acustica united with Acustica 91 (2005) 902–906. [Google Scholar]
  44. B.F.G. Katz, C. d’Alessandro: Directivity measurement of the singing voice, in: 19th International Congress on Acoustics 2007 (ICA 2007), Madrid, Spain, 2–7 September 2007, 2007. [Google Scholar]
  45. M. Pollow, G. Behler, B. Masiero: Measuring directivities of natural sound sources with a spherical microphone array, in: 1st Ambisonics Symposium, Graz, Austria, June 2009. [Google Scholar]
  46. F. Hohl: Kugelmikrofonarray zur abstrahlungsvermessung von musikinstrumenten. Master’s thesis, IEM, Graz, Austria, 2009. [Google Scholar]
  47. M. Pollow, G.K. Behler, F. Schultz: Musical instrument recording for building a directivity database, in: Fortschritte der Akustik (DAGA), Berlin, Germany, March, 2010. [Google Scholar]
  48. K.J. Bodon, T.W. Leishman: Development, evaluation, and validation of a high-resolution directivity measurement system for live musical instruments. Journal of the Acoustical Society of America 138, 3 (2015) 1785. [CrossRef] [Google Scholar]
  49. K.J. Bodon: Development, evaluation, and validation of a high-resolution directivity measurement system for played musical instruments. Master’s thesis, Brigham Young University, 2016. [Google Scholar]
  50. S. Weinzierl, M. Vorländer, G. Behler, F. Brinkmann, H. von Coler, E. Detzner, J. Krämer, A. Lindau, M. Pollow, F. Schulz, N.R. Shabtai: A database of anechoic microphone array measurements of musical instruments – recordings, directivities, and audio features. Technical report. TU Berlin, 2017. [Google Scholar]
  51. M. Brandner, M. Frank, F. Zotter: DirPat – database and viewer of 2D/3D directivity patterns of sound sources and receivers, in: 144th Convention of the Audio Engineering Society (AES), Milan, Italy, May, 2018. [Google Scholar]
  52. M. Brandner, N. Meyer-Kahlen, M. Frank: Directivity pattern measurement of a grand piano for augmented acoustic reality, in: Fortschritte der Akustik, Hanover, March 2020. [Google Scholar]
  53. N.J. Eyring, T.W. Leishman, K.M. Sorensen, N.G.W. Eyring: Methods for automating multichannel directivity measurements of musical instruments in an anechoic chamber. Journal of the Acoustical Society of America 130, 4 (2011) 2399. [CrossRef] [Google Scholar]
  54. S.D. Bellows, T.W. Leishman: Spherical harmonic expansions of high-resolution musical instrument directivities. Proceedings of Meetings on Acoustics 35, 1 (2018) 035005. [CrossRef] [Google Scholar]
  55. T.W. Leishman, S.D. Bellows: Musical instrument directivity measurements. Journal of the Acoustical Society of America 146, 4 (2019) 2822. [CrossRef] [Google Scholar]
  56. T. Grother, M. Kob: High resolution 3D radiation measurements on the bassoon, in: International Symposium on Musical Acoustics (ISMA), Detmold, Germany, September 2019. [Google Scholar]
  57. T.W. Leishman, S.D. Bellows, C.M. Pincock, J.K. Whiting: High-resolution spherical directivity of live speech from a multiple-capture transfer function method. Journal of the Acoustical Society of America 149, 3 (2021) 1507–1523. [CrossRef] [PubMed] [Google Scholar]
  58. N.R. Shabtai, G. Behler, M. Vorländer, S. Weinzierl: Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. Journal of the Acoustical Society of America 141, 2 (2017) 1246–1256. [CrossRef] [PubMed] [Google Scholar]
  59. D.W. Ritchie, G.J.L. Kemp: Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry 20, 4 (1999) 383–395. [CrossRef] [Google Scholar]
  60. J. Ivanic, K. Ruedenberg: Rotation matrices for real spherical harmonics. Direct determination by recursion. Journal of Physical Chemistry 100 (1996) 6342–6347. [CrossRef] [Google Scholar]
  61. C.H. Choi, J. Ivanic, M.S. Gordon, K. Ruedenberg: Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. Journal of Chemical Physics 111, 19 (1999) 8825–8831. [CrossRef] [Google Scholar]
  62. G. Aubert: An alternative to Wigner d-matrices for rotating real spherical harmonics. AIP Advances 3, 6 (2013) 062121. [CrossRef] [Google Scholar]
  63. B. Huhle, T. Schairer, W. Straßer: Normalized cross-correlation using SOFT, in: Proceeding of the International Workshop on Local and Non-Local Approximation in Image Processing, 19–21 August 2009, pp. 82–86. [Google Scholar]
  64. C. Anemüller, J. Herre: Calculation of directivity patterns from spherical microphone array recordings, in: Proceeding of the 147th Convention of the Audio Engineering Society, New York, NY, USA, October 2019. [Google Scholar]
  65. J. Diebel: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University, 2006. [Google Scholar]
  66. S. Sarabandi, F. Thomas: A survey on the computation of quaternions from rotation matrices. Journal of Mechanisms and Robotics 11, 2 (2019) 03. [CrossRef] [Google Scholar]
  67. W. Tape, C. Tape: Angle between principal axis triples. Geophysical Journal International 191, 2 (2012) 813–831. [CrossRef] [Google Scholar]
  68. D. Stein, E.R. Scheinerman, G.S. Chirikjian: Mathematical models of binary spherical-motion encoders. IEEE Transactions on Mechatronics 8, 2 (2003) 234–244. [CrossRef] [Google Scholar]
  69. G.S. Chirikjian, P.T. Kim, J.-Y. Koo, C.H. Lee: Rotational matching problems. International Journal of Computational Intelligence and Applications 4, 4 (2004) 401–416. [CrossRef] [Google Scholar]
  70. F. Zotter: Sampling strategies for acoustic holography/holophony on the sphere, in: 35th German Annual Conference on Acoustics (DAGA), Rotterdam, The Netherlands, March, 2009. [Google Scholar]
  71. J.C. Mitchell: Sampling rotation groups by successive orthogonal images. SIAM Journal on Scientific Computing 30, 1 (2008) 525–547. [CrossRef] [Google Scholar]
  72. A. Yershova, S. Jain, S.M. LaValle, J.C. Mitchell: Generating uniform incremental grids on SO(3) using the Hopf fibration. The International Journal of Robotics Research 29, 7 (2010) 801–812. [CrossRef] [PubMed] [Google Scholar]
  73. J.J. Kuffner: Effective sampling and distance metrics for 3D rigid body path planning. Proceedings of the IEEE International Conference on Robotics and Automation 4 (2004) 3993–3998. [Google Scholar]
  74. C. Beltrán, D. Ferizović: Approximation to uniform distribution in SO(3). Constructive Approximation 52, 2 (2020) 283–311. [CrossRef] [Google Scholar]
  75. P. Diaconis, M. Shahshahani: The subgroup algorithm for generating uniform random variables. Probability in the Engineering and Informational Sciences 1, 1 (1987) 15–32. [CrossRef] [Google Scholar]
  76. J. Arvo: Fast random rotation matrices, in: D. Kirk Ed. Graphics Gems III, Academic Press Professional, San Diego, 1992, pp. 117–120. [Google Scholar]
  77. R. Hielscher, J. Prestin, A. Vollrath: Fast summation of functions on the rotation group. Mathematical Geosciences 42 (2010) 773–794. [CrossRef] [Google Scholar]
  78. D.Q. Huynh: Metrics for 3D rotations: comparison and analysis. Journal of Mathematical Imaging and Vision 35, 2 (2009) 155–164. [CrossRef] [Google Scholar]
  79. J. Arvo: Random rotation matrices, in: J. Arvo, Ed. Graphics Gems II, Morgan Kaufmann, San Diego, 1991, pp. 355–356. [CrossRef] [Google Scholar]
  80. G. Huang, J. Chen, J. Benesty: A flexible high directivity beamformer with spherical microphone arrays. Journal of the Acoustical Society of America 143, 5 (2018) 3024–3035. [CrossRef] [PubMed] [Google Scholar]
  81. N. Shabtai, G. Behler, M. Vorländer: Database of musical instruments directivity pattern. Journal of the Acoustical Society of America 138, 3 (2015) 1784–1784. [CrossRef] [Google Scholar]
  82. I.B. Hagai, M. Pollow, M. Vorländer, B. Rafaely: Acoustic centering of sources measured by surrounding spherical microphone arrays. Journal of the Acoustical Society of America 130, 4 (2011) 2003–2015. [CrossRef] [PubMed] [Google Scholar]
  83. N.R. Shabtai, M. Vorländer: Acoustic centering of sources with high-order radiation patterns. Journal of the Acoustical Society of America 137, 4 (2015) 1947–1961. [CrossRef] [PubMed] [Google Scholar]
  84. M. Pollow, G. Behler, M. Vorländer: Post-processing and center adjustment of measured directivity data of musical instruments, in: Acoustics 2012, Nantes, France, April, 2012. [Google Scholar]
  85. S.D. Bellows, T.W. Leishman: Acoustic source centering of musical instrument directivities using acoustical holography. Proceedings of Meetings on Acoustics 42, 1 (2020) 055002. [CrossRef] [Google Scholar]
  86. A.C. Marruffo, V. Chatziioannou: A pilot study on tone-dependent directivity patterns of musical instruments, in: AES International Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA, August, 2022. [Google Scholar]
  87. E.A. Petersen, T. Colinot, F. Silva, V.H. Turcotte: The bassoon tonehole lattice: Links between the open and closed holes and the radiated sound spectrum. Journal of the Acoustical Society of America 150, 1 (2021) 398–409. [CrossRef] [PubMed] [Google Scholar]
  88. E. Accolti, J. Gimenez, M. Vorländer: Uncertainties of directivity data of musical instruments and their influence on room acoustics simulation. TechRxiv Preprint, September, 2022. https://doi.org/10.36227/techrxiv.20858596.v1 [Google Scholar]
  89. R. Baumgartner, E. Messner: Bachelor-arbeit: auswirkung der abstrahlcharakteristik auf die klangfarbe von querflöten und saxofonen. Master’s thesis. IEM, Graz, Austria, 2010. [Google Scholar]
  90. I. Borg, P.J.F. Groenen: Modern multidimensional scaling: theory and applications, 2nd edn. Springer, 2005. [Google Scholar]
  91. A. Einbond, D. Schwarz, R. Borghesi, N. Schnell: Introducing CatOracle: corpus-based concatenative improvisation with the audio oracle algorithm, in: International Computer Music Conference, Utrecht, 2016, pp. 141–147. [Google Scholar]
  92. F. Zotter, M. Zaunschirm, M. Frank, M. Kronlachner: A beamformer to play with wall reflections: the icosahedral loudspeaker. Computer Music Journal 41, 3 (2017) 50–68. [CrossRef] [Google Scholar]
  93. T. Risbo Fourier transform summation of Legendre series and D-functions. Journal of Geodesy 70, 7 (1996) 383–396. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.