Issue
Acta Acust.
Volume 7, 2023
Topical Issue - Audio for Virtual and Augmented Reality
Article Number 53
Number of page(s) 21
DOI https://doi.org/10.1051/aacus/2023049
Published online 27 October 2023
  1. J. Blauert: Spatial hearing: the psychophysics of human sound localization, revised edn., The MIT Press. 1996. [Google Scholar]
  2. M. Burge, W. Burger: Ear biometrics in computer vision, in: Proceedings 15th International Conference on Pattern Recognition. IEEE, 2000, pp. 822–826. [CrossRef] [Google Scholar]
  3. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. Journal of the Acoustical Society of America 136 (2014) 791–802. [CrossRef] [PubMed] [Google Scholar]
  4. X.-L. Zhong, B.-S. Xie: Head-related transfer functions and virtual auditory display, in: H. Glotin (Ed.), Chapter 6: Soundscape Semiotics – Localisation and Categorisation, vol. 1, IntechOpen, 2014, pp. 99–134. [Google Scholar]
  5. F. Asano, Y. Suzuki, T. Sone: Role of spectral cues in median plane localization. Journal of the Acoustical Society of America 88, 1 (1990) 159–168. [CrossRef] [PubMed] [Google Scholar]
  6. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. Journal of the Acoustical Society of America 94, 1 (1993) 111–123. [CrossRef] [PubMed] [Google Scholar]
  7. C. Jenny, C. Reuter: Usability of individualized head-related transfer functions in virtual reality: empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games 8, 3 (2020) 1–15. [Google Scholar]
  8. S. Li, J. Peissig: Measurement of head-related transfer functions: a review. Applied Sciences 10, 14 (2020) 1–40. [Google Scholar]
  9. R. Barumerli, M. Geronazzo, F. Avanzini: Round robin comparison of inter-laboratory HRTF measurements – assessment with an auditory model for elevation, in: IEEE 4th VR Workshop on Sonic Interactions for Virtual Environments. IEEE, 2018, pp. 1–5. [Google Scholar]
  10. B.F.G. Katz: Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. Journal of the Acoustical Society of America 110, 5 (2001) 2440–2448. [CrossRef] [PubMed] [Google Scholar]
  11. H. Ziegelwanger, P. Majdak, W. Kreuzer: Numerical calculation of listener-specific head-related transfer functions and sound localization: microphone model and mesh discretization. Journal of the Acoustical Society of America 138, 1 (2015) 208–222. [CrossRef] [PubMed] [Google Scholar]
  12. F.R. Ospina, M. Emerit, B.F. Katz, The threedimensional morphological database for spatial hearing research of the BiLi project, in: Proceedings of Meetings on Acoustics. Acoustical Society of America, 2015, pp. 1–17. [Google Scholar]
  13. C.T. Jin, P. Guillon, N. Epain, R. Zolfaghari, A. Van Schaik, A.I. Tew, C. Hetherington, J. Thorpe: Creating the Sydney York morphological and acoustic recordings of ears database. IEEE Transactions on Multimedia 16, 1 (2014) 37–46. [CrossRef] [Google Scholar]
  14. A. Reichinger, P. Majdak, R. Sablatnig, S. Maierhofer, Evaluation of methods for optical 3-D scanning of human pinnas, in: Proceedings – 2013 International Conference on 3D Vision. IEEE, 2013, pp. 390–397. [CrossRef] [Google Scholar]
  15. M. Dinakaran, F. Brinkmann, S. Harder, R. Pelzer, P. Grosche, R.R. Paulsen, S. Weinzierl: Perceptually motivated analysis of numerically simulated head-related transfer functions generated by various 3D surface scanning systems, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, IEEE, 2018, pp. 551–555. [Google Scholar]
  16. K. Pollack, W. Kreuzer, P. Majdak, Perspective chapter: modern acquisition of personalised head-related transfer functions – an overview, in: Advances in Fundamental and Applied Research on Spatial Audio, IntechOpen, 2022. [Google Scholar]
  17. Y. Kahana, P.A. Nelson: Numerical modelling of the spatial acoustic response of the human pinna. Journal of Sound and Vibration 292, 1–2 (2006) 148–178. [CrossRef] [Google Scholar]
  18. M.T. Ross, R. Cruz, T.L. Brooks-Richards, L.M. Hafner, S.K. Powell, M.A. Woodruff: Comparison of three-dimensional surface scanning techniques for capturing the external ear. Virtual and Physical Prototyping 13, 4 (2018) 255–265. [CrossRef] [Google Scholar]
  19. A. Mäkivirta, M. Malinen, J. Johansson, V. Saari, A. Karjalainen, P. Vosough, Accuracy of photogrammetric extraction of the head and torso shape for personal acoustic HRTF modeling, in: 148th Audio Engineering Society International Convention. Audio Engineering Society, 2020, pp. 1–8. [Google Scholar]
  20. V.R. Algazi, R.O. Duda, D.M. Thompson, C. Avendano: The CIPIC HRTF database, in: Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics. IEEE, 2001, pp. 99–102. [CrossRef] [Google Scholar]
  21. W.W. Hugeng, D. Gunawan: Improved method for individualization of head-related transfer functions on horizontal plane using reduced number of anthropometric measurements. Journal of Telecommunications 2, 2 (2010) 31–41. [Google Scholar]
  22. H. Takemoto, P. Mokhtari, H. Kato, R. Nishimura, K. Iida: Mechanism for generating peaks and notches of head-related transfer functions in the median plane. Journal of the Acoustical Society of America 132, 6 (2012) 3832–3841. [CrossRef] [PubMed] [Google Scholar]
  23. J. Fels, M. Vorländer: Anthropometric parameters influencing head-related transfer functions. Acta Acustica united with Acustica 95, 2 (2009) 331–342. [CrossRef] [Google Scholar]
  24. S. Ghorbal, T. Auclair, C. Soladié, R. Séguier: Pinna morphological parameters influencing HRTF sets, in: Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17). DAFx-17, 2017, pp. 353–359. [Google Scholar]
  25. P. Stitt, B.F.G. Katz: Sensitivity analysis of pinna morphology on head-related transfer functions simulated via a parametric pinna model. Journal of the Acoustical Society of America 149, 4 (2021) 2559–2572. [CrossRef] [PubMed] [Google Scholar]
  26. M. Vorländer: Past, present and future of dummy heads, in: Acústica. S. Hirzel Verlag, 2004, pp. 1–6. [Google Scholar]
  27. A. Andreopoulou, D.R. Begault, B.F. Katz: Inter-laboratory round robin HRTF measurement comparison. IEEE Journal on Selected Topics in Signal Processing 9, 5 (2015) 895–906. [CrossRef] [Google Scholar]
  28. R. Greff, B.F.G. Katz: Round robin comparison of HRTF simulation results: preliminary results, in: 123rd AES Convention. Audio Engineering Society, 2007, pp. 1–5. [Google Scholar]
  29. P. Mokhtari, H. Takemoto, R. Nishimura, H. Kato: Computer simulation of KEMAR’s head-related transfer functions: verification with measurements and acoustic effects of modifying head shape and pinna concavity, in: Principles and Applications of Spatial Hearing, World Scientific Publishing Company, 2011, pp. 205–215. [CrossRef] [Google Scholar]
  30. K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung: Point cloud noise and outlier removal for image-based 3D reconstruction, in: Proceedings – 2016 4th International Conference on 3D Vision, 3DV. IEEE, 2016, pp. 118–127. [CrossRef] [Google Scholar]
  31. R. Struck, S. Cordoni, S. Aliotta, L. Pérez-Pachón, F. Gröning: Application of photogrammetry in biomedical science, in: Chapter 10: Biomedical Visualization, Advances in Experimental Medicine and Biology, vol. 1, Springer, 2019, pp. 121–130. [CrossRef] [PubMed] [Google Scholar]
  32. J.L. Schönberger, J.-M. Frahm: Structure-from-motion revisited, in: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 4104–4113. [Google Scholar]
  33. J.L. Schönberger, E. Zheng, M. Pollefeys, J.M. Frahm: Pixelwise view selection for unstructured multi-view stereo, in: European Conference on Computer Vision (ECCV). Springer, 2016, pp. 1–15. [Google Scholar]
  34. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia: MeshLab: an open-source mesh processing tool, in: Sixth Eurographics Italian Chapter Conference. The Eurographics Association, 2008, pp. 129–136. [Google Scholar]
  35. M. Kazhdan, H. Hoppe: Screened poisson surface reconstruction. ACM Transactions on Graphics 32, 3 (2013) 1–13. [CrossRef] [Google Scholar]
  36. J. Möbius, L. Kobbelt: OpenFlipper: an open source geometry processing and rendering framework, in: Proceedings of the 7th international conference on Curves and Surfaces. Springer, 2010, pp. 488–500. [Google Scholar]
  37. P. Liepa: Filling holes in meshes, in: Eurographics Symposium on Geometry Processing. The Eurographics Association, pp. 200–205, 2003. [Google Scholar]
  38. H. Ziegelwanger, W. Kreuzer, P. Majdak: A priori mesh grading for the numerical calculation of the head-related transfer functions. Applied Acoustics 114 (2016) 99–110. [CrossRef] [Google Scholar]
  39. P. Cignoni, C. Rocchini, R. Scopigno: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17 (1998) 167–174. [CrossRef] [Google Scholar]
  40. M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N.J. Mitra, M. Ovsjanikov: PointCleanNet: learning to denoise and remove outliers from dense point clouds. Computer Graphics Forum 39, 1 (2019) 185–203. [Google Scholar]
  41. H. Ziegelwanger, W. Kreuzer, P. Majdak: MESH2HRTF: an open-source software package for the numerical calculation of head-related transfer functions, in: Proceedings of the 22nd International Congress on Sound and Vibration. International Institute of Acoustics and Vibration, 2015, pp. 1–8. [Google Scholar]
  42. A.B. Dobrucki, P. Plaskota: Computational modelling of head-related transfer functions. Archives of Acoustics 32, 3 (2007) 659–682. [Google Scholar]
  43. F. Brinkmann, A. Lindau, S. Weinzierl, S. Van De Par, M. Müller-Trapet, R. Opdam, M. Vorländer: A high resolution and full-spherical head-related transfer function database for different head-above-torso orientations. Journal of the Audio Engineering Society 65, 10 (2017) 841–848. [CrossRef] [Google Scholar]
  44. J.C. Middlebrooks, D.M. Green: Directional dependence of interaural envelope delays. Journal of the Acoustical Society of America 87, 5 (1990) 2149–2162. [CrossRef] [PubMed] [Google Scholar]
  45. ClubFritz HRTFs Database: https://sofacoustics.org/data/database/clubfritz/ [Accessed on January 29, 2021]. [Google Scholar]
  46. Replication Data for: Analysis of Photogrammetric Scanning Error Significance on Numerical Head-Related Transfer Functions of a Dummy Head [Accessed on March 20, 2023]. https://doi.org/10.48804/MLQ90Q. [Google Scholar]
  47. P.L. Sondergaard, P. Majdak: The auditory modeling toolbox, in: J. Blauert (Ed.), The Technology of Binaural Listening, Springer, 2013, pp. 33–56. [CrossRef] [Google Scholar]
  48. P. Majdak, R. Baumgartner, B. Laback: Acoustic and non-acoustic factors in modeling listenerspecific performance of sagittal-plane sound localization. Frontiers in Psychology 5, 319 (2014) 1–10. [CrossRef] [PubMed] [Google Scholar]
  49. A. Andreopoulou, B.F. Katz: Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees. Journal on Multimodal User Interfaces 10, 3 (2016) 259–271. [CrossRef] [Google Scholar]
  50. ARI HRTFs Database: https://sofacoustics.org/data/database/ari/ [Accessed on April 20, 2021]. [Google Scholar]
  51. B.F. Katz, R. Nicol: Binaural spatial reproduction, in: Sensory Evaluation of Sound, CRC Press, Taylor & Francis Group, 2018, pp. 349–388. [CrossRef] [Google Scholar]
  52. A. Andreopoulou, B.F.G. Katz: Identification of perceptually relevant methods of inter-aural time difference estimation. Journal of the Acoustical Society of America 142, 2 (2017) 588–598. [CrossRef] [PubMed] [Google Scholar]
  53. S. Klockgether, S. van de Par: Just noticeable differences of spatial cues in echoic and anechoic acoustical environments. Journal of the Acoustical Society of America 140, 4 (2016) 352–357. [Google Scholar]
  54. F. Di Giusto, F. Lluis Salvadó, S. van Ophem, W. Desmet, E. Deckers: Deep learning for photogrammetric ear point clouds denoising, in: Proceedings of DAGA 2022. German Acoustical Society, 2022, pp. 146–149. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.