Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 13
Number of page(s) 16
Section Aeroacoustics
DOI https://doi.org/10.1051/aacus/2024005
Published online 15 March 2024
  1. I.R. Titze: Principles of voice production. 2nd ed., National Center for Voice and Speech, Denver, 2000. [Google Scholar]
  2. I.R. Titze: The myoelastic aerodynamic theory of phonation. National Center for Voice and Speech, Denver, 2006. [Google Scholar]
  3. J. Wendler, W. Seidner, U. Eysholdt: Lehrbuch der phoniatrie und pädaudiologie. 4th ed., Thieme, Stuttgart, 2005. [Google Scholar]
  4. S. Kniesburges, A. Lodermeyer, S. Becker, M. Traxdorf, M. Döllinger: The mechanisms of subharmonic tone generation in a synthetic larynx model. Journal of the Acoustical Society of America 139, 6 (2016) 3182–3192. [CrossRef] [PubMed] [Google Scholar]
  5. G.E. Peterson, H.L. Barney: Control methods used in a study of the vowels. Journal of the Acoustical Society of America 24 (1952) 175–184. [CrossRef] [Google Scholar]
  6. J. van den Berg, J.T. Zantema, P. Doornenbal: On the air resistance and the Bernoulli effect of the human larynx. Journal of the Acoustical Society of America 29 (1957) 626–631. [CrossRef] [Google Scholar]
  7. F. Alipour, C. Brücker, D.D. Cook, A. Gömmel, M. Kaltenbacher, W. Mattheus, L. Mongeau, E. Nauman, R. Schwarze, I. Tokuda, S. Zörner: Mathematical models and numerical schemes for the simulation of human phonation. Current Bioinformatics 6, 3 (2011) 323–343. [CrossRef] [Google Scholar]
  8. S. Kniesburges, S. L. Thomson, A. Barney, M. Triep, P. Šidlof, J. Horáčcek, C. Brücker, S. Becker: In vitro experimental investigation of voice production. Current Bioinformatics 6, 3 (2011) 305–322. [CrossRef] [PubMed] [Google Scholar]
  9. R. Mittal, B.D. Erath, M.W. Plesniak: Fluid dynamics of human phonation and speech. Annual Review of Fluid Mechanics 45 (2013) 437–467. [CrossRef] [Google Scholar]
  10. Z. Zhang: Mechanics of human voice production and control. Journal of the Acoustical Society of America 140, 4 (2016) 2614–2635. [CrossRef] [PubMed] [Google Scholar]
  11. R.C. Scherer, D. Shinwari, K.J. De Witt, C. Zhang, B.R. Kucinschi, A.A. Afjeh: Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. Journal of the Acoustical Society of America 109, 4 (2001) 1616–1630. [CrossRef] [PubMed] [Google Scholar]
  12. D.A. Berry, Z. Zhang, J. Neubauer: Mechanisms of irregular vibration in a physical model of the vocal folds. Journal of the Acoustical Society of America 120, 3 (2006) EL36–EL42. [CrossRef] [PubMed] [Google Scholar]
  13. S. Kniesburges, A. Lodermeyer, M. Semmler, Y.K. Schulz, A. Schützenberger, S. Becker: Analysis of the tonal sound generation during phonation with and without glottis closure. Journal of the Acoustical Society of America 147, 5 (2020) 3285–3293. [CrossRef] [PubMed] [Google Scholar]
  14. A. Lodermeyer, M. Tautz, S. Becker, M. Döllinger, V. Birk, S. Kniesburges: Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach. Experiments in Fluids 59 (2018) 13. [CrossRef] [Google Scholar]
  15. J. Neubauer, Z. Zhang, R. Miraghaie, D.A. Berry: Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. Journal of the Acoustical Society of America 121, 2 (2007) 1102–1118. [CrossRef] [PubMed] [Google Scholar]
  16. S.L. Smith, S.L. Thomson: Effect of inferior surface angle on the self-oscillation of a computational vocal fold model. Journal of the Acoustical Society of America 131, 5 (2012) 4062–4075. [CrossRef] [PubMed] [Google Scholar]
  17. S.L. Thomson, L. Mongeau, S.H. Frankel: Aerodynamic transfer of energy to the vocal folds. Journal of the Acoustical Society of America 118, 3 (2005) 1689–1700. [CrossRef] [PubMed] [Google Scholar]
  18. Z. Zhang: Vibration in a self-oscillating vocal fold model with leftright asymmetry in body-layer stiffness. Journal of the Acoustical Society of America 128, 5 (2010) 279–285. [Google Scholar]
  19. S. Falk, S. Kniesburges, S. Schoder, B. Jakubaß, P. Maurerlehner, M. Echternach, M. Kaltenbacher, M. Döllinger, 3D-FV-FE aeroacoustic larynx model for investigation of functional based voice disorders. Frontiers in Physiology 12 (2021) 226. [CrossRef] [Google Scholar]
  20. M.H. Farahani, J. Mousel, F. Alipour, S. Vigmostad: A numerical and experimental investigation of the effect of false vocal fold geometry on glottal flow. Journal of Biomechanical Engineering 135, 12 (2013) 1210061. [CrossRef] [Google Scholar]
  21. M. Mihaescu, S.M. Khosla, S. Murugappan, E.J. Gutmark: Vortex dipolar structures in a rigid model of the larynx at flow onset. Journal of the Acoustical Society of America 127, 1 (2010) 435–444. [CrossRef] [PubMed] [Google Scholar]
  22. P. Šidlof, S. Zörner, A. Hüppe: A hybrid approach to the computational aeroacoustics of human voice production. Biomechanics and Modeling in Mechanobiology 14 (2015) 473–488. [CrossRef] [PubMed] [Google Scholar]
  23. M. Döllinger, J. Kobler, D.A. Berry, D.D. Mehta, G. Luegmair, C. Bohr: Experiments on analysing voice production: Excised (human, animal) and in vivo (animal) approaches. Current Bioinformatics 6, 3 (2011) 286–304. [CrossRef] [PubMed] [Google Scholar]
  24. S. Kniesburges, V. Birk, A. Lodermeyer, A. Schützenberger, C. Bohr, S. Becker: Effect of the ventricular folds in a synthetic larynx model. Journal of Biomechanics 55 (2017) 128–133. [CrossRef] [PubMed] [Google Scholar]
  25. N. Ruty, L. Bailly, X. Pelorson, N. Henrich: Influence of a constriction in the near field of the vocal folds: Physical modeling and experimental validation. Journal of the Acoustical Society of America 128, 5 (2008) 3296–3308. [Google Scholar]
  26. M. Motie-Shirazi, M. Zanartu, S.D. Peterson, B.D. Erath: Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy. Journal of the Acoustical Society of America 150, 2 (2021) 1332–1345. [CrossRef] [PubMed] [Google Scholar]
  27. D. Bodaghi, Q. Xue, X. Zheng, S. Thomson: Effect of subglottic stenosis on vocal fold vibration and voice production using fluid–structure–acoustics interaction simulation. Applied Sciences 11, 3 (2021) 1221. [CrossRef] [Google Scholar]
  28. B.A. Hilton, S.L. Thomson: Aerodynamic-induced effects of artificial subglottic stenosis on vocal fold model phonatory response. Journal of Voice (2022). [Google Scholar]
  29. M. Motie-Shirazi, M. Zanartu, S.D. Peterson, D.D. Mehta, J.B. Kobler, R.E. Hillman, B.D. Erath: Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models. Applied Science 9, 3 (2019) 3002. [CrossRef] [Google Scholar]
  30. R. Veltrup, S. Kniesburges, M. Semmler: Influence of perspective distortion in laryngoscopy. Journal of Speech, Language, and Hearing Research 66, 9 (2023) 3276–3289. [CrossRef] [PubMed] [Google Scholar]
  31. S. Weiß, S.L. Thomson, R. Lerch, M. Döllinger, A. Sutor: Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling. Journal of the Mechanical Behavior of Biomedical Materials 17 (2013) 137–151. [CrossRef] [PubMed] [Google Scholar]
  32. M. Döllinger, Z. Zhang, S. Schoder, P. Šidlof, B. Tur, S. Kniesburges: Overview on state-of-the-art numerical modeling of the phonation process. Acta Acustica 7 (2023) 25. [CrossRef] [EDP Sciences] [Google Scholar]
  33. F. Durst, U. Heim, B. Ünsal, G. Kullik: Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Measurement Science and Technology 14 (2003) 893–903. [CrossRef] [Google Scholar]
  34. T.D. Rossing: Handbook of acoustics. Springer, New York, 2007. [CrossRef] [Google Scholar]
  35. Z. Zhang, J. Neubauer, D.A. Berry: Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Journal of the Acoustical Society of America 120, 5 PT 1 (2006) 2841–2849. [CrossRef] [PubMed] [Google Scholar]
  36. Z. Zhang, J. Neubauer, D.A. Berry: The influence of subglottal acoustics on laboratory models of phonation. Journal of the Acoustical Society of America 120, 3 (2006) 1558–1569. [CrossRef] [PubMed] [Google Scholar]
  37. S.L. Thomson, L. Mongeau, F.H. Frankel: Physical and numerical flow-excited vocal fold model. In: C. Manfredi (Ed.) Proceedings of the 3rd International Workshop MAVEBA, 2003, pp. 147–150. [Google Scholar]
  38. S. Kniesburges: Fluid-structure-acoustic interaction during phonation in a synthetic larynx model. PhD thesis, FAU Erlangen-Nürnberg, Düren, 2014. [Google Scholar]
  39. S. Kniesburges, C. Hesselmann, S. Becker, E. Schlücker, M. Döllinger: Influence of vortical flow structures on the glottal jet location in the supraglottal region. Journal of Voice 272, 5 (2013) 531–544. [CrossRef] [PubMed] [Google Scholar]
  40. A. Lodermeyer, E. Bagheri, S. Kniesburges, C. Näger, J. Probst, M. Döllinger, S. Becker: The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach. Journal of the Acoustical Society of America 150, 5 (2021) 3485–3499. [CrossRef] [PubMed] [Google Scholar]
  41. A. Kist, P. Gomez, D. Dubrovskiy, P. Schlegel, M. Kunduk, M. Echternach, R. Patel, M. Semmler, C. Bohr, S. Dürr, A. Schützenberger, M. Döllinger: A deep learning enhanced novel software tool for laryngeal dynamics analysis. Journal of Speech, Language, and Hearing Research 64, 6 (2021) 1889–1903. [CrossRef] [PubMed] [Google Scholar]
  42. H. Sadeghi, S. Kniesburges, S. Falk, M. Kaltenbacher, A. Schützenberger, M. Döllinger: Towards a clinically applicable computational larynx model. Applied Sciences 9, 11 (2019) 2288. [CrossRef] [Google Scholar]
  43. R.J. Adrian, J. Westerweel: Particle image velocimetry. Cambridge University Press, Cambridge, 2011. [Google Scholar]
  44. A. Lodermeyer: A laser-based technique to evaluate sound generation during phonation. PhD thesis, FAU Erlangen-Nürnberg, Erlangen, 2020. [Google Scholar]
  45. L. Cavalli, A. Hirson: Diplophonia reappraised. Journal of Voice 13, 4 (1999) 542–556. [CrossRef] [PubMed] [Google Scholar]
  46. R. de Kat, B. van Oudheusden: Instantaneous planar pressure determination from PIV in turbulent flow. Experiments in Fluids 52 (2012) 1089–1106. [CrossRef] [Google Scholar]
  47. X. Liu, J. Katz: Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Experiments in Fluids 41 (2006) 227–240. [CrossRef] [Google Scholar]
  48. P. Maurerlehner, S. Schoder, C. Freidhager, A. Wurzinger, A. Hauser, F. Kraxberger, S. Falk, S. Kniesburges, M. Echternach, M. Döllinger, M. Kaltenbacher: simVoice – a three-dimensional simulation model based on a hybrid aeroacoustic approach. e & i Elektrotechnik und Informationstechnik 138 (2021) 219–228. [CrossRef] [Google Scholar]
  49. H. Sadeghi, M. Döllinger, M. Kaltenbacher, S. Kniesburges: Aerodynamic impact of the ventricular folds in computational larynx models. Journal of the Acoustical Society of America 145, 4 (2019) 2376–2387. [CrossRef] [PubMed] [Google Scholar]
  50. H. Sadeghi, S. Kniesburges, M. Kaltenbacher, A. Schützenberger, M. Döllinger: Computational models of laryngeal aerodynamics: Potentials and numerical costs. Journal of Voice 33, 4 (2019) 385–400. [CrossRef] [PubMed] [Google Scholar]
  51. S. Schoder, A. Hauser, P. Maurerlehner, S. Falk, S. Kniesburges, M. Doellinger, M. Kaltenbacher: simVoice – Efficient acoustic propagation model of the human voice source using finite element method. In: N.H. Bernardoni, L. Bailly (Eds.), Proceedings of the 12th International Conference on Voice Physiology and Biomechanics, Grenoble, France, March 2020. [Google Scholar]
  52. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 04 (2019) 1950020. [Google Scholar]
  53. S. Schoder, F. Kraxberger, S. Falk, A. Wurzinger, K. Roppert, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Error detection and filtering of incompressible flow simulations for aeroacoustic predictions of human voice. Journal of the Acoustical Society of America 152, 3 (2022) 1425–1436. [CrossRef] [PubMed] [Google Scholar]
  54. S. Schoder, P. Maurerlehner, A. Wurzinger, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Aeroacoustic sound source characterization of the human voice production-perturbed convective wave equation. Applied Sciences 11, 6 (2021) 2614. [CrossRef] [Google Scholar]
  55. S. Schoder, M. Weitz, P. Maurerlehner, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher, Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. Journal of the Acoustical Society of America 147, 2 (2020) 1179–1194. [CrossRef] [PubMed] [Google Scholar]
  56. J. Donea, A. Huerta, J.-Ph. Ponthot, A. Rodriguez-Ferran: Arbitrary Lagrangian–Eulerian Methods, Vol. 1. John Wiley & Sons Ltd, 2004, pp. 414–437. [Google Scholar]
  57. M. Feistauer, P. Sváček, J. Horáček: Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds. Springer Basel, Basel, 2014, pp. 321–393. [Google Scholar]
  58. H. Hadzic: Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids. PhD thesis. TU Hamburg, Hamburg, 2005. [Google Scholar]
  59. F. Nicoud, F. Ducros: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62, 3 (1999) 193–200. [Google Scholar]
  60. H. Reichardt: Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen, Zeitschrift für Angewandte Mathematik und Mechanik 31, 7 (1951) 208–219. [CrossRef] [Google Scholar]
  61. J.D. Anderson: Computational fluid dynamics. 3rd ed., McGraw-Hill, Berlin, 1995. [Google Scholar]
  62. C. Hirsch: Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Elsevier, Oxford, 2007. [Google Scholar]
  63. M.J. Lighthill: On sound generated aerodynamically. I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 211, 1107 (1952) 564–587. [Google Scholar]
  64. J.-H. Seo, Y.J. Moon: Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA Journal 43, 8 (2005) 1716–1724. [CrossRef] [Google Scholar]
  65. A. Hüppe, M. Kaltenbacher: Comparison of source term formulations for computational aeroacoustics. In: 19th AIAA/CEAS Aeroacoustics Conference, Berlin, 2013. [Google Scholar]
  66. S. Zörner, P. Šidlof, A. Hüppe, M. Kaltenbacher: Flow and acoustic effects in the larynx for varying geometries. Acta Acustica United with Acustica 102, 2 (2016) 257–267. [CrossRef] [Google Scholar]
  67. M. Kaltenbacher (Ed.), Computational acoustics. Springer, CISM International Centre for Mechanical Sciences, 2017. [Google Scholar]
  68. S. Schoder, K. Roppert: openCFS: Open source finite element software for coupled field simulation–part acoustics (2022). ArXiv preprint available at https://doi.org/10.48550/arXiv.2207.04443. [Google Scholar]
  69. B. Kaltenbacher, M. Kaltenbacher, I. Sim: A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. Journal of Computational Physics 235 (2013) 407–422. [CrossRef] [PubMed] [Google Scholar]
  70. M. Ainsworth: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM Journal on Numerical Analysis 42, 2 (2004) 553–575. [CrossRef] [Google Scholar]
  71. M. Kaltenbacher: Numerical simulation of mechatronic sensors and actuators: Finite elements for computational multiphysics. 3rd ed., Springer, Berlin-Heidelberg, 2015. [Google Scholar]
  72. P. Welch: The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15, 2 (1967) 70–73. [CrossRef] [Google Scholar]
  73. S. Kniesburges, S. Schoder: FSAI-01: A benchmark case for aeroacoustic simulations involving fluid-structure-acoustic interaction transferred from the process of human phonation, Zenodo 1 (2023) 1–2. https://doi.org/10.5281/zenodo.10402984. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.