Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 14
Number of page(s) 12
Section Speech
DOI https://doi.org/10.1051/aacus/2024006
Published online 15 March 2024
  1. T. Halkosaari, M. Vaalgamaa, M. Karjalainen: Directivity of artificial and human speech. Journal of the Audio Engineering Society 53 (2005) 620–631. [Google Scholar]
  2. D. Cabrera, P.J. Davis, A. Connolly: Long-term horizontal vocal directivity of opera singers: effects of singing projection and acoustic environment. Journal of Voice 25 (2011) 291–303. [Google Scholar]
  3. AES56-2008 (r2019): AES standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements, Audio Engineering Society, New York, NY, 2019. [Google Scholar]
  4. CLF Group: CLF: A common loudspeaker format. Syn-Aud-Con News 32 (2004) 14–17. [Google Scholar]
  5. Ahnert Feistel Media Group: GLL: A new standard for measuring and storing loudspeaker performance data, 2007. Availabale at https://www.afmg.eu/en/gll-loudspeaker-data-format-white-paper. [Google Scholar]
  6. H.K. Dunn, D.W. Farnsworth: Exploration of pressure field around the human head during speech. Journal of the Acoustical Society of America 10 (1939) 184–199. [CrossRef] [Google Scholar]
  7. A. Moreno, J. Pretzschner: Human head directivity in speech emission: a new approach. Acoustics Letters 1 (1978) 78–84. [Google Scholar]
  8. W.T. Chu, A.C. Warnock: Detailed directivity of sound fields around the human head during speech. Research Report IRC-RR-104. National Research Council Canada, 2002. [Google Scholar]
  9. F. Bozzoli, M. Viktorovitch, A. Farina: Balloons of directivity of real and artificial mouth used in determining speech transmission index, in: Proceedings of the 118th Audio Engineering Society Convention, Barcelona, Spain, May 28–31 2005, 2005, pp. 1–5. Paper 6492. [Google Scholar]
  10. B.F.G. Katz, F. Prezat, C. d’Alessandro: Human voice phoneme directivity pattern measurements. Journal of the Acoustical Society of America 120 (2006) 3359–3359. [CrossRef] [Google Scholar]
  11. B.F.G. Katz, C. D’Alessandro: Directivity measurements of the singing voice, in: Proceedings of the 19th International Congress on Acoustics, Madrid, Spain, 2–7 September, 2007. [Google Scholar]
  12. T.W. Leishman, S.D. Bellows, C.M. Pincock, J.K. Whiting: High-resolution spherical directivity of live speech from a multiple-capture transfer function method. Journal of the Acoustical Society of America 149 (2021) 1507–1523. [CrossRef] [PubMed] [Google Scholar]
  13. C. Pörschmann, J.M. Arend: A method for spatial upsampling of voice directivity by directional equalization. Journal of the Audio Engineering Society 68 (2020) 649–663. [CrossRef] [Google Scholar]
  14. C. Pörschmann, J.M. Arend: Investigating phoneme-dependencies of spherical voice directivity patterns. The Journal of the Acoustical Society of America 149 (2021) 4553–4564. [CrossRef] [PubMed] [Google Scholar]
  15. B. Rafaely: Fundamentals of spherical array processing. Springer-Verlag, Berlin Heidelberg, 2015. [CrossRef] [Google Scholar]
  16. L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques. Journal of the Acoustical Society of America 138 (2015) 708–730. [Google Scholar]
  17. S.D. Bellows, T.W. Leishman: Optimal microphone placement for single-channel sound-power spectrum estimation and reverberation effects. Journal of the Audio Engineering Society 71 (2023) 20–33. [CrossRef] [Google Scholar]
  18. D. Zotkin, R. Duraiswami, N. Gumerov'‘ Regularized HRTF fitting using spherical harmonics, in: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, 18–21 October, 2009, IEEE, pp. 257–260. [Google Scholar]
  19. P.C. Hansen: Regularization tools: A MATLAB package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6 (1994) 1–35. [CrossRef] [Google Scholar]
  20. M. Aussal, F. Alouges, B. Katz: A study of spherical harmonics interpolation for HRTF exchange. Proceedings on Meetings in Acoustics 19 (2013) 1–9. [Google Scholar]
  21. S.D. Bellows, T.W. Leishman: Obtaining far-field spherical directivities of guitar amplifiers from arbitrarily shaped arrays using the Helmholtz equation least-squares method. Proceedings of Meetings on Acoustics 42 (2020) 055005. [CrossRef] [Google Scholar]
  22. P.C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, in: P. Johnston (Ed.), Computational inverse problems in electrocardiology, WIT Press, 2001, pp. 119–142. [Google Scholar]
  23. S.D. Bellows, T.W. Leishman: A spherical-harmonic-based framework for spatial sampling considerations of musical instrument and voice directivity measurements, in: 10th Convention of the European Acoustics Association, Turin, Italy, 11th–15th September 2023. [Google Scholar]
  24. L. Beranek, T. Mellow: Acoustics: Sound fields, transducers and vibration, 2nd edn., Academic Press, 2019. [Google Scholar]
  25. S. Bellows, T.W. Leishman: Effect of head orientation on speech directivity, in: Procceedings of 23rd Interspeech, Incheon, South Korea, September 18–22, 2022, pp. 246–250. [Google Scholar]
  26. M. Brandner, R. Blandin, M. Frank, A. Sontacchi: A pilot study on the influence of mouth configuration and torso on singing voice directivity. Journal of the Acoustical Society of America 148 (2020) 1169–1180. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.