Open Access
Acta Acust.
Volume 8, 2024
Article Number 7
Number of page(s) 11
Section Aeroacoustics
Published online 01 February 2024
  1. S. Guérin, E. Thomy, M.C.M. Wright: Aeroacoustics of automotive vents. Journal of Sound and Vibration 285, 4 (2005) 859–875. [CrossRef] [Google Scholar]
  2. D. Kurniawan, E. Rogers: Investigation of airflow induced whistle noise by HVAC control doors utilizing a “v-shape” rubber seal. SAE Technical Paper 2011-01-1615, 2011. [Google Scholar]
  3. D. Oldham, A. Ukpoho: A pressure-based technique for predicting regenerated noise levels in ventilation systems. Journal of Sound and Vibration 140, 2 (1990) 259–272. [CrossRef] [Google Scholar]
  4. O. Kårekull, G. Efraimsson, M. Åbom: Prediction model of flow duct constriction noise. Applied Acoustics 82 (2014) 45–52. [CrossRef] [Google Scholar]
  5. P. Nelson, C. Morfey: Aerodynamic sound production in low speed flow ducts. Journal of Sound and Vibration 79, 2 (1981) 263–289. [CrossRef] [Google Scholar]
  6. D.J. Oldham, D.C. Waddington: The prediction of airflow-generated noise in ducts from considerations of similarity, Journal of Sound and Vibration 248 (2001) 780–787. [CrossRef] [Google Scholar]
  7. N. Han, C.M. Mak, Prediction of flow-generated noise produced by acoustic and aerodynamic interactions of multiple in-duct elements. Applied Acoustics 69, 6 (2008) 566–573. [CrossRef] [Google Scholar]
  8. C. Cai, C.M. Mak: Generalized flow-generated noise prediction method for multiple elements in air ducts. Applied Acoustics 135 (2018) 136–141. [CrossRef] [Google Scholar]
  9. J. Kreuzinger, F. Schwertfirm, M. Hartmann, N. Peller: Analysis of resonance phenomena caused by obstacles in HVAC exhaust nozzles using a combined CFD-CAA approach, in: 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, May 27–29, 2013. [Google Scholar]
  10. R. Parker, S.A.T. Stoneman: The excitation and consequences of acoustic resonances in enclosed fluid flow around solid bodies. Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science 203, 1 (1989) 9–19. [CrossRef] [Google Scholar]
  11. S. Ziada, P. Lafon: Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures. Applied Mechanics Reviews 66, 1 (2013) 010802 [Google Scholar]
  12. C. Sovardi, Y. Aurégan, W. Polifke: Parametric LES/SI based aeroacoustic characterization of tandem orifices in low Mach number flows, Acta Acustica united with Acustica 102, 5 (2016) 793–803. [CrossRef] [Google Scholar]
  13. U. Karban, C. Schram: Modal identification of aeroacoustic systems using passive and active approaches. Journal of the Acoustical Society of America 142, 6 (2017) 3804–3812. [CrossRef] [PubMed] [Google Scholar]
  14. U. Karban, G. Ogus, K. Kucukcoskun, C.F. Schram, C. Sovardi, W. Polifke: Noise produced by a tandem diaphragm: Experimental and numerical investigations. in: 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 16–20 June, 2014. [Google Scholar]
  15. S. Sack, M. Shur, M. Åbom, M. Strelets, A. Travin: Numerical education of active multi-port data for in-duct obstructions. Journal of Sound and Vibration 411 (2017) 328–345. [CrossRef] [Google Scholar]
  16. S. Sack, M. Åbom: Investigation of orifice aeroacoustics by means of multi-port methods. Journal of Sound and Vibration 407 (2017) 32–45. [CrossRef] [Google Scholar]
  17. F. Li, P. Wang, Y. Liu: Unsteady flow behaviors and noise generation mechanisms of tandem orifices in a circular duct. Physics of Fluids 35, 1 (2023) 015142. [CrossRef] [Google Scholar]
  18. P. Martinez-Lera, K. Kucukcoskun, M. Shur, A. Travin, M. Tournour: Hybrid aeroacoustic computations for flows in ducts with single and tandem diaphragms, in: 22nd AIAA/CEAS Aeroacoustics Conference Lyon, France, 30 May–1 June, 2016. [Google Scholar]
  19. A. Sengissen, B. Caruelle, P. Souchotte, E. Jondeau, T. Poinsot: LES of noise induced by flow through a double diaphragm system, in: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), Miami, Florida, 11 May 2009–13 May 2009. [Google Scholar]
  20. F. Mendonca, A. Read, S. Caro, K. Debatin, B. Caruelle: Aeroacoustic simulation of double diaphragm orifices in an aircraft climate control system, in: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, 23 May 2005 – 25 May 2005. [Google Scholar]
  21. H. Trabelsi, N. Zerbib, J.-M. Ville, F. Foucart: Passive and active acoustic properties of a diaphragm at low Mach number: Experimental procedure and numerical simulation. European Journal of Computational Mechanics 20 (2011) 49–71. [CrossRef] [Google Scholar]
  22. J. Lavrentjev, M. Åbom: Characterization of fluid machines as acoustic multi-port sources. Journal of Sound and Vibration 197, 1 (1996) 1–16. [CrossRef] [Google Scholar]
  23. F. Hugues: Modelling the vibrations generated by turbulent flows in ducts. PhD Thesis, Université de Technologie de Compiène, 2018. Available at [Google Scholar]
  24. O. Kårekull, G. Efraimsson, M. Åbom: Revisiting the Nelson–Morfey scaling law for flow noise from duct constrictions. Journal of Sound and Vibration 357 (2015) 233–244. [CrossRef] [Google Scholar]
  25. P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y. Aurégan, A. Hirschberg, M.C.A.M. Peters: Quasisteady aero-acoustic response of orifices. The Journal of the Acoustical Society of America 110 (2001) 1859–1872. [CrossRef] [PubMed] [Google Scholar]
  26. J. Rossiter: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, volume 3438 of Aeronautical research council report and memorandum, Ministry of Aviation, United Kingdom, 1964. [Google Scholar]
  27. X. Gloerfelt, C. Bogey, C. Bailly: Cavity noise [lecture notes], Arts et Métiers ParisTech, 2007, pp. 262–272. [Google Scholar]
  28. V. Sarohia: Experimental investigation of oscillations in flows over shallow cavities, AIAA Journal 15, 7 (1977) 984–991. [CrossRef] [Google Scholar]
  29. C. Mockett, T. Knacke, F. Thiele: Detection of initial transient and estimation of statistical error in time-resolved turbulent flow data, in: 8th International Symposium on Engineering Turbulence Modelling and Measurements (ETMM8), Marseille, France, 9–11 June 2010. [Google Scholar]
  30. N. Papaxanthos, E. Perrey-Debain, S. Bennouna, B. Ouedraogo, S. Moreau, J. Ville: Pressure-based integral formulations of Lighthill–Curle’s analogy for internal aeroacoustics at low mach numbers. Journal of Sound and Vibration 393 (2017) 176–186. [CrossRef] [Google Scholar]
  31. N. Papaxanthos, E. Perrey-Debain: Integral formulations for the prediction of low Mach number flow noise with non-compact solid surfaces, in: 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016. [Google Scholar]
  32. V. Suponitsky, E. Avital, M. Gaster: On three-dimensionality and control of incompressible cavity flow, Physics of Fluids 17, 10 (2005) 104103. [CrossRef] [Google Scholar]
  33. C.W. Rowley, T. Colonius, A.J. Basu: On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. Journal of Fluid Mechanics 455 (2002) 315–346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.