Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 8
Number of page(s) 13
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2023071
Published online 05 February 2024
  1. S. McAdams: Musical timbre perception. Elsevier, 2013, pp. 35–67. [Google Scholar]
  2. C. Fritz, A.F. Blackwell, I. Cross, J. Woodhouse, B.C.J. Moore: Exploring violin sound quality: Investigating English timbre descriptors and correlating resynthesized acoustical modifications with perceptual properties. The Journal of the Acoustical Society of America 131 (2012) 783–794. [CrossRef] [PubMed] [Google Scholar]
  3. C. Saitis, C. Fritz, G.P. Scavone, C. Guastavino, D. Dubois: Perceptual evaluation of violins: A psycholinguistic analysis of preference verbal descriptions by experienced musicians. The Journal of the Acoustical Society of America 141 (2017) 2746. [CrossRef] [PubMed] [Google Scholar]
  4. H. Fastl, E. Zwicker: Sharpness and sensory pleasantness, in Psychoacoustics: Facts and Models, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 239–246. [CrossRef] [Google Scholar]
  5. R. Sottek: Psychoacoustically based tonality model for the evaluation of noise with tonal components. The Journal of the Acoustical Society of America 137 (2015) 2320. [CrossRef] [Google Scholar]
  6. D.L. Wessel: Timbre space as a musical control structure. Computer Music Journal 3 (1979) 45. [CrossRef] [Google Scholar]
  7. G.D. Poli, P. Prandoni: Sonological models for timbre characterization. Journal of New Music Research 26 (1997) 170. [CrossRef] [Google Scholar]
  8. J.D. Deng, C. Simmermacher, S. Cranefield: A study on feature analysis for musical instrument classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38 (2008) 429. [CrossRef] [PubMed] [Google Scholar]
  9. J.G.A. Barbedo, G. Tzanetakis: Instrument identification in polyphonic music signals based on individual partials, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (2010) 401–404. [CrossRef] [Google Scholar]
  10. S. McAdams, K. Siedenburg: Perception and cognition of musical timbre, in: P.J. Rentfrow, D.J. Levitin (Eds.), Foundations of Music Psychology: Theory and Research, MIT Press, Cambridge, 2019, pp. 71–120. [Google Scholar]
  11. R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedzielski, S. Fincke, K.L. Field, M. Contolini: Eigenvoices for speaker adaptation. ICSLP, 1998. [Google Scholar]
  12. R. Kuhn, J.-C. Junqua, P. Nguyen, N. Niedzielski: Rapid speaker adaptation in eigenvoice space. IEEE Transactions on Speech and Audio Processing 8 (2000) 695. [CrossRef] [Google Scholar]
  13. R.J. Weiss, D.P.W. Ellis: Monaural speech separation using source-adapted models, in 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2007, pp. 114–117. [CrossRef] [Google Scholar]
  14. S. Ghisingh, V.K. Mittal: Classifying musical instruments using speech signal processing methods, in: 2016 IEEE Annual India Conference (INDICON), 2016, pp. 1–6. [Google Scholar]
  15. G. Grindlay, D.P.W. Ellis: Multi-voice polyphonic music transcription using eigeninstruments, in: 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2009, pp. 53–56. [CrossRef] [Google Scholar]
  16. G. Grindlay, D.P.W. Ellis: A probabilistic subspace model for multi-instrument polyphonic transcription, in: Proceedings of the 11th International Society for Music Information Retrieval Conference. Utrecht, Netherlands, ISMIR, 2010, pp. 21–26. [Google Scholar]
  17. G. Grindlay, D.P.W. Ellis: Transcribing multi-instrument polyphonic music with hierarchical eigeninstruments. IEEE Journal of Selected Topics in Signal Processing 5 (2011) 1159. [CrossRef] [Google Scholar]
  18. J.J. Burred, A. Robel, T. Sikora: Dynamic spectral envelope modeling for timbre analysis of musical instrument sounds. IEEE Transactions on Audio, Speech, and Language Processing 18 (2010) 663. [CrossRef] [Google Scholar]
  19. J. Liu, L. Xie: SVM-based automatic classification of musical instrumentsIn: 2010 International Conference on Intelligent Computation Technology and Automation, Vol. 3, 2010, pp. 669–673. [CrossRef] [Google Scholar]
  20. J.G.A. Barbedo, G. Tzanetakis: Musical instrument classification using individual partials. IEEE Transactions on Audio, Speech, and Language Processing 19 (2011) 111. [CrossRef] [Google Scholar]
  21. M. Joshi, S. Nadgir: Extraction of feature vectors for analysis of musical instruments, in 2014 International Conference on Advances in Electronics Computers and Communications, 2014, pp. 1–6. [Google Scholar]
  22. D.H. Bhalke, C.B.R. Rao, D.S. Bormane: Automatic musical instrument classification using fractional Fourier transform based-MFCC features and counter propagation neural network. Journal of Intelligent Information Systems 46 (2016) 425. [CrossRef] [Google Scholar]
  23. C. Hourdin, G. Charbonneau, T. Moussa: A multidimensional scaling analysis of musical instruments’ time-varying spectra. Computer Music Journal 21 (1997) 40. [CrossRef] [Google Scholar]
  24. M.A. Loureiro, H.B. Paula, H.C. Yehia: Timbre classification of a single musical instrument, in Proc. Intl. Conf. on Music Information Retrieval (ISMIR), 2004. [Google Scholar]
  25. C. Reuter, I. Czedik-Eysenberg, S. Siddiq, M. Oehler: Formant distances and the similarity perception of wind instrument timbres, in Proceedings of ICMPC15/ESCOM10. Centre for Systematic Musicology, University of Graz, Graz, Austria, 2018. [Google Scholar]
  26. T. Kitahara, M. Goto, H. Okuno: Musical instrument identification, In: 2003 International Conference on Multimedia and Expo. ICME ‘03. Proceedings (Cat. No. 03TH8698), Vol. 3, 2003, III–409. [CrossRef] [Google Scholar]
  27. G. Peeters, B.L. Giordano, P. Susini, N. Misdariis, S. McAdams: The Timbre Toolbox: Extracting audio descriptors from musical signals. The Journal of the Acoustical Society of America 130 (2011) 2902. [CrossRef] [PubMed] [Google Scholar]
  28. M. Chudy, S. Dixon: Recognising cello performers using timbre models, in: A. Lausen, D. Van den Poel, A. Ultsch (Eds.), Algorithms from and for nature and life. Springer International Publishing, Cham, 2013, pp. 511–518. [CrossRef] [Google Scholar]
  29. M. Yokoyama, Y. Awahara: Relation between violin timbre and harmony overtone. Proceedings of Meetings on Acoustics 29 (2016) 035001. [CrossRef] [Google Scholar]
  30. M. Yokoyama: Possibility of distinction of violin timbre by spectral envelope. Applied Acoustics 157 (2020) 107006. [CrossRef] [Google Scholar]
  31. G.J. Sandell, W.L. Martens: Perceptual evaluation of principal-component-based synthesis of musical timbres. Journal of the Audio Engineering Society 43 (1995) 1013. [Google Scholar]
  32. T.M. Elliott, L.S. Hamilton, F.E. Theunissen: Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. Journal of the Acoustical Society of America 133 (2013) 389. [CrossRef] [PubMed] [Google Scholar]
  33. S. Town, J. Bizley: Neural and behavioral investigations into timbre perception. Frontiers in Systems Neuroscience 7 (2013) 88. [CrossRef] [PubMed] [Google Scholar]
  34. V. Arora, L. Behera: Instrument identification using PLCA over stretched manifolds, in: 2014 Twentieth National Conference on Communications (NCC), 2014, 1–5. [Google Scholar]
  35. H. Lee, D. Müllensiefen: The timbre perception test (TPT): A new interactive musical assessment tool to measure timbre perception ability. Attention, Perception, & Psychophysics 82 (2020) 3658. [CrossRef] [PubMed] [Google Scholar]
  36. M.E. McIntyre, J. Woodhouse: The acoustics of stringed musical instruments, Interdisciplinary Science Reviews 3 (1978) 157–173. [CrossRef] [Google Scholar]
  37. M.E. McIntyre, J. Woodhouse: On the fundamentals of bowed string dynamics. Acustica 43 (1979) 93. [Google Scholar]
  38. M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments. Journal of the Acoustical Society of America 74 (1983) 1325. [CrossRef] [Google Scholar]
  39. L. Cremer: The physics of the violin. MIT Press, Cambridge, Mass, 1984. [Google Scholar]
  40. C.M. Hutchins, V. Benade (Eds.), Research Papers in Violin Acoustics, 1975–1993. Acoustical Society of America, 1996. [Google Scholar]
  41. N.H. Fletcher, T.D. Rossing: The physics of musical instruments. 2nd ed., Springer, New York, 2010. [Google Scholar]
  42. A. Chaigne, J. Kergomard: Acoustics of musical instruments. Springer, 2016. [CrossRef] [Google Scholar]
  43. H. Dünnwald: Zur messung von geigenfrequenzgängen. Acustica 51 (1982) 281. [Google Scholar]
  44. H. Dünnwald: Ein verfahren zur objektiven bestimmung der klangqualitat von violinen. Acustica 58 (1985) 162. [Google Scholar]
  45. H. Dünnwald: Ein erweitertes verfahren zur objektiven bestimmung der klangqualitat von violinen. Acustica 71 (1990) 269. [Google Scholar]
  46. CAS – Catgut Acoustical Society. https://www.catgutacoustical.org. [Google Scholar]
  47. G. Weinreich, E.B. Arnold: Method for measuring acoustic radiation fields. The Journal of the Acoustical Society of America 68 (1980) 404. [CrossRef] [Google Scholar]
  48. L.M. Wang, C.B. Burroughs: Directivity patterns of acoustic radiation from bowed violins. Catgut Acoustical Society Journal 3 (1999) 7. [Google Scholar]
  49. G. Bissinger: Parametric plate-bridge dynamic filter model of violin radiativity. The Journal of the Acoustical Society of America 132 (2012) 465. [CrossRef] [PubMed] [Google Scholar]
  50. N.R. Shabtai, G. Behler, M. Vorländer, S. Weinzierl: Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. The Journal of the Acoustical Society of America 141 (2017) 1246. [CrossRef] [PubMed] [Google Scholar]
  51. J. Meyer: Acoustics and the performance of music. Springer, New York, NY, 2009, pp. 159–161. [Google Scholar]
  52. J. Pätynen, T. Lokki: Directivities of symphony orchestra instruments. Acta Acustica united with Acustica 96 (2010) 138. [CrossRef] [Google Scholar]
  53. J. Woodhouse: The acoustics of the violin: A review. Reports on Progress in Physics 77 (2014) 115901. [CrossRef] [PubMed] [Google Scholar]
  54. S. Weinzierl, S. Lepa, F. Schultz, E. Detzner, H. von Coler, G. Behler: Sound power and timbre as cues for the dynamic strength of orchestral instruments. The Journal of the Acoustical Society of America 144 (2018) 1347. [CrossRef] [PubMed] [Google Scholar]
  55. R.K. Cook, R.V. Waterhouse, R.D. Berendt, S. Edelman, M.C. Thompson: Measurement of correlation coefficients in reverberant sound fields. The Journal of the Acoustical Society of America 27 (1955) 1072. [CrossRef] [Google Scholar]
  56. F. Jacobsen: The diffuse sound field – Report No. 27. The Acoustic Laboratory, Technical University of Denmark, 1979. [Google Scholar]
  57. B. Rafaely: Spatial-temporal correlation of a diffuse sound field. The Journal of the Acoustical Society of America 107 (2000) 3254. [CrossRef] [PubMed] [Google Scholar]
  58. M. Schroder: Die statistischen parameter der frequenzkurven von Grossen Raumen. Acta Acustica united with Acustica 4 (1954) 594. [Google Scholar]
  59. R. Prislan, U. Kržič, D. Svenšek: Quantifying sound colour of musical instruments - precise harmonic timbre coordinates of like instruments (audio examples, animated graphs). Zenodo (2024). https://doi.org/10.5281/zenodo.10435330. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.