Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 9
Number of page(s) 11
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2023070
Published online 16 February 2024
  1. World Health Organization (WHO): Environmental noise guidelines for the European, 2018. Available at https://iris.who.int/handle/10665/279952. [Google Scholar]
  2. H. Fastl, J. Hunecke Psychoacoustic experiments on the aircraft malus. In: Arnold W, Hirsekorn S, Eds., 21st Annual German Congress on Acoustics, Saarbrücken, Germany. Deutsche Gesellschaft für Akustik e.V., Oldenburg, Germany, 1995, pp. 407–410. https://pub.dega-akustik.de/DAGA_1991-1995.zip [Google Scholar]
  3. G. Brambilla, L. Maffei: Perspective of the soundscape approach as a tool for urban space design. Noise Control Engineering Journal 58, 5 (2010) 532. [CrossRef] [Google Scholar]
  4. S.A. Rizzi, A. Christian: A psychoacoustic evaluation of noise signatures from advanced civil transport aircraft. In: 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June, 2016. American Institute of Aeronautics and Astronautics. [Google Scholar]
  5. M. Vorländer: Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality, 2nd edn., RWTHedition, Springer International Publishing, Cham, 2020. [Google Scholar]
  6. R. Pieren, L. Bertsch, D. Lauper, B. Schäffer: Improving future low-noise aircraft technologies using experimental perception-based evaluation of synthetic flyovers. Science of the Total Environment 692 (2019) 68–81. [CrossRef] [Google Scholar]
  7. C. Dreier, M. Vorländer: Aircraft noise – auralization-based assessment of weather-dependent effects on loudness and sharpness. Journal of the Acoustical Society of America 149, 5 (2021) 3565–3575. [CrossRef] [PubMed] [Google Scholar]
  8. L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen: Creating interactive virtual acoustic environments. Journal of the Audio Engineering Society 47, 9 (1999) 675–705. [Google Scholar]
  9. N. Tsingos, E. Gallo, G. Drettakis: Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics 23, 3 (2004) 249–258. [CrossRef] [Google Scholar]
  10. P. Schäfer, M. Vorländer: Atmospheric ray tracing: an efficient, open-source framework for finding eigenrays in a stratified, moving medium. Acta Acustica 5 (2021) 26. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Michael Arntzen: Aircraft noise calculation and synthesis in a non-standard atmosphere. PhD thesis, Delft University of Technology, 2014. Available at http://resolver.tudelft.nl/uuid:c56e213c-82db-423d-a5bd-503554653413. [Google Scholar]
  12. S. Rizzi, B. Sullivan: Synthesis of virtual environments for aircraft community noise impact studies. In: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, 23–25 May 2005. American Institute of Aeronautics and Astronautics. [Google Scholar]
  13. A. Sahai, F. Wefers, S. Pick, E. Stumpf, M. Vorländer, T. Kuhlen: Interactive simulation of aircraft noise in aural and visual virtual environments. Applied Acoustics 101 (2016) 24–38. [CrossRef] [Google Scholar]
  14. K. Heutschi, R. Pieren, M. Müller, M. Manyoky, U.W. Hayek, K. Eggenschwiler: Auralization of wind turbine noise: propagation filtering and vegetation noise synthesis. Acta Acustica united with Acustica 100, 1 (2014) 13–24. [CrossRef] [Google Scholar]
  15. J. Forssén, T. Kaczmarek, J. Alvarsson, P. Lundén, M.E. Nilsson: Auralization of traffic noise within the LISTEN project – Preliminary results for passenger car pass-by. In: Proceedings of the European Conference on Noise and Control, Euronoise, Edinburgh, Scotland, 2009, Edinburgh, 2009. [Google Scholar]
  16. R. Pieren, T. Bütler, K. Heutschi: Auralization of accelerating passenger cars using spectral modeling synthesis. Applied Sciences 6, 1 (2015) 5. [CrossRef] [Google Scholar]
  17. M. Arntzen, S.A. Rizzi, H.G. Visser, D.G. Simons: Framework for simulating aircraft flyover noise through nonstandard atmospheres. Journal of Aircraft 51, 3 (2014) 956–966. [CrossRef] [Google Scholar]
  18. J. Stienen: Real-time auralisation of outdoor sound propagation. Logos Verlag, Berlin, 2023. Available at https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=5629&lng=eng&id=. [CrossRef] [Google Scholar]
  19. J.O. Smith, S. Serafin, J. Abel, D. Berners: Doppler simulation and the Leslie. In: Proceedings of the 5th International Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26–28, 2002. [Google Scholar]
  20. J. Stienen, M. Vorlãnder: Real-time auralization of propagation paths with reflection, diffraction and the Doppler shift. In: B Seeber, Ed., 44th Annual German Congress on Acoustics, Munich, Germany, Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, Germany, 2018, pp. 1302–1305. Available at https://pub.dega-akustik.de/DAGA_2018. [Google Scholar]
  21. F. Wefers, J. Stienen, S. Pelzer, M. Vorländer: Interactive acoustic virtual environments using distributed room acoustic simulations. In: S Weinzierl, M Vorländer, F Zotter, H-J Maempel, A Lindau, Eds., EAA Joint Symposium on Auralization and Ambisonics, Berlin, Germany, Universitätsverlag der TU Berlin, 2014, pp. 48–55. [Google Scholar]
  22. P. Palenda, P. Schafer, J. Stienen, M. Vorlander: Open-source simulation scheduling framework for real-time auralization. In: P Leistner, Ed., 48th Annual German Congress on Acoustics, Stuttgart, Germany, Deutsche Gesellschaft für Akustik e.V. (DEGA), Berlin, Germany, 2022, pp. 1451–1454. Available at https://pub.dega-akustik.de/DAGA_2022. [Google Scholar]
  23. Institute for Hearing Technology and Acoustics: Virtual Acoustics – a real-time auralization framework for scientific research, 2021. Available at http://virtualacoustics.org/VA. [Google Scholar]
  24. C. Dreier, M. Vorländer: Sound source modelling by nonnegative matrix factorization for virtual reality applications. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, 5 (2021) 1053–1061. [CrossRef] [Google Scholar]
  25. C. Dreier, X. Vogt, W. Schröder, M. Vorländer: Acoustic source characterization of simulated subsonic jet noise using spherical harmonics. Journal of the Acoustical Society of America 154, 1 (2023) 167–178. [CrossRef] [PubMed] [Google Scholar]
  26. K. Risse, E. Anton, T. Lammering, K. Franz, R. Hoernschemeyer: An integrated environment for preliminary aircraft design and optimization. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, Hawaii, 23–26 April 2012. American Institute of Aeronautics and Astronautics, 2012. [Google Scholar]
  27. H. Fastl, Eberhard Zwicker: Psychoacoustics: Facts and models. Number 22 in Springer Series in Information Sciences, 3rd edn. Springer, Berlin, New York, 2007. [Google Scholar]
  28. A. Quarteroni, R. Sacco, F. Saleri: Numerical mathematics. Number 37 in Texts in Applied Mathematics, Springer, New York, 2000. [Google Scholar]
  29. International Organization for Standardization: ISO 532–1:2017, Acoustics – Methods for calculating loudness – Part 1: Zwicker method, 2017. [Google Scholar]
  30. Institute of Technical Acoustics (ITA): VACore. Available at https://git.rwth-aachen.de/ita/VACore, December 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.