Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 42
Number of page(s) 21
Section Structural Acoustics
DOI https://doi.org/10.1051/aacus/2024049
Published online 02 October 2024
  1. U.P. Yadav: Impulsive noise generated in impact forming machinery. Applied Acoustics 7 (1974) 295–310. [CrossRef] [Google Scholar]
  2. S. Vajpayee: Acoustic characterisation of an impact forming machine. Applied Acoustics 20 (1987) 3–13. [CrossRef] [Google Scholar]
  3. Y. Asahi, W.H. Cho, A. Arimitsu, T. Toi: Modification of impact sound by adjusting the excitation input for comfortable design of punch press machine sound. Noise Control Engineering Journal 63 (2015) 598–607. [CrossRef] [Google Scholar]
  4. P. Gning, V. Lanfranchi, N. Dauchez: Influence of the multi-component electrical feed of air-core industrial reactors on their sound radiation. Acta Acustica 4 (2020) 14. [CrossRef] [EDP Sciences] [Google Scholar]
  5. M.S. Mosharrof, J. Brunskog, F. Ljunggren, A. Agren: An improved prediction model for the impact sound level of lightweight floors: introducing decoupled floor-ceiling and beam-plate moment. Acta Acustica United with Acustica 97 (2011) 254–265. [CrossRef] [Google Scholar]
  6. D.I. McBride: Evidence updates on risk factors for occupational noise-induced hearing loss (ONIHL) Update 2: review of impact and impulse noise evidence. ACC (2018) 1–29. Available at https://www.acc.co.nz/assets/research/69aa104638/ONIHL-evidence-impact-impulse.pdf. [Google Scholar]
  7. C.L. Themann, E.A. Masterson: Occupational noise exposure: a review of its effects, epidemiology, and impact with recommendations for reducing its burden. The Journal of the Acoustical Society of America 146 (2019) 3879–3905. [CrossRef] [PubMed] [Google Scholar]
  8. S. Sergeev, T. Humbert, H. Lissek, Y. Aurégan: Corona discharge actuator as an active sound absorber under normal and oblique incidence. Acta Acustica 6 (2022) 5. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J.A. Gripp, D.A. Rade: Vibration and noise control using shunted piezoelectric transducers: a review. Mechanical Systems and Signal Processing 112 (2018) 359–383. [CrossRef] [Google Scholar]
  10. M. Volery, X. Guo, H. Lissek: Robust direct acoustic impedance control using two microphones for mixed feedforward-feedback controller. Acta Acustica 7 (2023) 2. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Shivashankar, S.J. Gopalakrishnan: Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Materials and Structures 29 (2020) 053001. [CrossRef] [Google Scholar]
  12. Y. Tao, M. Ren, H. Zhang, T. Peijs: Recent progress in acoustic materials and noise control strategies – a review. Applied Materials Today 24 (2021) 101141. [CrossRef] [Google Scholar]
  13. S.M. Hasheminejad, R. Vesal: Numerical simulation of impact sound transmission control across a smart hybrid double floor system equipped with a genetically-optimized NES absorber. Applied Acoustics 182 (2021) 108179. [CrossRef] [Google Scholar]
  14. S. Wrona, M. Pawelczyk, L. Cheng: Semi-active links in double-panel noise barriers. Mechanical Systems and Signal Processing 154 (2021) 107542. [CrossRef] [Google Scholar]
  15. A. Dijckmans: Wave based modeling of the sound insulation of double walls with structural connections. Acta Acustica United with Acustica 103 (2017) 465–479. [CrossRef] [Google Scholar]
  16. J. Li, P. Yang, S. Li: Reduction of sound transmission through finite clamped metamaterial-based double-wall sandwich plates with poroelastic cores. Acta Acustica United with Acustica 105 (2019) 850–868. [CrossRef] [Google Scholar]
  17. S.M. Hasheminejad, A. Jamalpoor: Sound transmission control through a hybrid smart double sandwich plate structure. Journal of Sandwich Structures & Materials 23 (2021) 2443–2483. [CrossRef] [Google Scholar]
  18. S.M. Hasheminejad, A. Jamalpoor: Cancelation of acoustic scattering from a smart hybrid ERF/PZT-based double-wall composite spherical shell structure. Mechanics of Advanced Materials and Structures 29 (2022) 7294–7315. [CrossRef] [Google Scholar]
  19. S.M. Hasheminejad, A. Jamalpoor: Control of sound transmission into a hybrid double-wall sandwich cylindrical shell. Journal of Vibration and Control 28 (2022) 689–706. [CrossRef] [Google Scholar]
  20. A.O. Oyelade: Analytical modelling of sound transmission through finite clamped double-wall panels with magnetic-linked stiffness. Acoustics Australia 47 (2019) 153–163. [CrossRef] [Google Scholar]
  21. J. Shao, J. Yang, X. Wu, T. Zeng: Nonlinear energy sink applied for low-frequency noise control inside acoustic cavities: a review. Journal of Low Frequency Noise, Vibration and Active Control 40 (2021) 1453–1472. [CrossRef] [Google Scholar]
  22. Q. Mao: Improvement on sound transmission loss through a double-plate structure by using electromagnetic shunt damper. Applied Acoustics 158 (2020) 107075. [CrossRef] [Google Scholar]
  23. S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, K. Huang: Energy harvesting wireless communications: a review of recent advances. IEEE Journal on Selected Areas in Communications 33 (2015) 360–381. [CrossRef] [Google Scholar]
  24. D. Diab, N. Smagin, F. Lefebvre, G. Nassar, S. Isber, F. El Omar, A. Naja: Broadband vibrational energy harvesting with a spherical piezoelectric transducer devoted to underwater wireless sensor networks. Acta Acustica United with Acustica 105 (2019) 616–629. [CrossRef] [Google Scholar]
  25. A.A. Babayo, M.H. Anisi, I. Ali: A review on energy management schemes in energy harvesting wireless sensor networks. Renewable and Sustainable Energy Reviews 76 (2017) 1176–1184. [CrossRef] [Google Scholar]
  26. A.E. Akin-Ponnle, N.B. Carvalho: Energy harvesting mechanisms in a smart city—a review. Smart Cities 4 (2021) 476–498. [CrossRef] [Google Scholar]
  27. H. Pan, L. Qi, Z. Zhang, J. Yan: Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review. Applied Energy 286 (2021) 116518. [CrossRef] [Google Scholar]
  28. H. Zhu, T. Tang, H. Yang, J. Wang, J. Song, G. Peng: The state-of-the-art brief review on piezoelectric energy harvesting from flow-induced vibration. Shock and Vibration 2021 (2021) 8861821. [CrossRef] [Google Scholar]
  29. K.T. Prajwal, K. Manickavasagam, R. Suresh: A review on vibration energy harvesting technologies: analysis and technologies. The European Physical Journal Special Topics 231 (2022) 1359–1371. [CrossRef] [Google Scholar]
  30. A.F. Ahmad, A.R. Razali, F.R. Romlay, I.S. Razelan: Energy harvesting on pavement a review. International Journal of Renewable Energy Research 11 (2021) 1250–1266. [Google Scholar]
  31. S. Sharma, R. Kiran, P. Azad, R. Vaish: A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Conversion and Management 254 (2022) 115272. [CrossRef] [Google Scholar]
  32. P. Visconti, L. Bagordo, R. Velázquez, D. Cafagna, R. De Fazio: Available technologies and commercial devices to harvest energy by human trampling in smart flooring systems: a review. Energies 15 (2022) 432. [CrossRef] [Google Scholar]
  33. S.U. Ahmed, A. Sabir, T. Ashraf, M.A. Haider, F. Perveen, Z. Farooqui, R. Uddin: Energy harvesting through floor tiles, in: International Conference on Innovative Computing, IEEE, 2019, pp. 1–6. https://doi.org/10.1109/ICIC48496.2019.8966706. ISBN: 978-1-7281-4682-9. [Google Scholar]
  34. T. Jintanawan, G. Phanomchoeng, S. Suwankawin, P. Kreepoke, P. Chetchatree, C. U-viengchai: Design of kinetic-energy harvesting floors. Energies 13 (2020) 5419. [CrossRef] [Google Scholar]
  35. C.Q. Gómez Muñoz, G. Zamacola Alcalde, F.P. García Márquez: Analysis and comparison of macro fiber composites and lead zirconate titanate (PZT) discs for an energy harvesting floor. Applied Sciences 10 (2020) 5951. [Google Scholar]
  36. S.H. Wang, M.C. Tsai, T.H. Wu: The analysis and design of a high efficiency piezoelectric harvesting floor with impacting force mechanism. Crystals 11 (2021) 380. [CrossRef] [Google Scholar]
  37. X. Zhong, S. Wang, J. Chen, X. Liu, M. Guan, L. Chen: Energy harvesting from a floor structure based on multiple piezoelectric transducer beams. Ferroelectrics 577 (2021) 181–191. [CrossRef] [Google Scholar]
  38. T. Yang, S. Zhou, S. Fang, W. Qin, D.J. Inman: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews 8 (2021) 31317. [CrossRef] [Google Scholar]
  39. Q. Cai, S. Zhu: The nexus between vibration-based energy harvesting and structural vibration control: a comprehensive review. Renewable and Sustainable Energy Reviews 155 (2022) 111920. [CrossRef] [Google Scholar]
  40. Y. Pei, Y. Liu, L. Zuo: Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting. Journal of Sound and Vibration 423 (2018) 1–17. [CrossRef] [Google Scholar]
  41. M. Alshaqaq, A. Erturk: Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting. Smart Materials and Structures 30 (2020) 015029. [Google Scholar]
  42. L. Zuo, W. Cui: Dual-functional energy-harvesting and vibration control: electromagnetic resonant shunt series tuned mass dampers. Journal of Vibration and Acoustics 135 (2013) 051018. [CrossRef] [Google Scholar]
  43. S.F. Ali, S. Adhikari: Energy harvesting dynamic vibration absorbers. Journal of Applied Mechanics 80 (2013) 041004. [CrossRef] [Google Scholar]
  44. M.J. Brennan, B. Tang, G.P. Melo, V. Lopes Jr: An investigation into the simultaneous use of a resonator as an energy harvester and a vibration absorber. Journal of Sound and Vibration 333 (2014) 1331–1343. [CrossRef] [Google Scholar]
  45. Y. Luo, H. Sun, X. Wang, L. Zuo, N. Chen: Wind induced vibration control and energy harvesting of electromagnetic resonant shunt tuned mass-damper-inerter for building structures. Shock and Vibration 2017 (2017) 4180134. [Google Scholar]
  46. Z. Lu, Z. Wang, Y. Zhou, X. Lu: Nonlinear dissipative devices in structural vibration control: a review. Journal of Sound and Vibration 423 (2018) 18–49. [CrossRef] [Google Scholar]
  47. H. Ding, L.Q. Chen: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics 100 (2020) 3061–3107. [CrossRef] [Google Scholar]
  48. G. Zhao, G. Raze, A. Paknejad, A. Deraemaeker, G. Kerschen, C. Collette: Active nonlinear energy sink using force feedback under transient regime. Nonlinear Dynamics 102 (2020) 1319–1336. [CrossRef] [Google Scholar]
  49. A.F. Vakakis, D.M. McFarland, L. Bergman, L.I. Manevitch, O. Gendelman: Isolated resonance captures and resonance capture cascades leading to single-or multi-mode passive energy pumping in damped coupled oscillators. Journal of Vibration and Acoustics 126 (2004) 235–244. [CrossRef] [Google Scholar]
  50. A.F. Vakakis, O.V. Gendelman, L.A. Bergman, A. Mojahed, M. Gzal: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dynamics 108 (2022) 711–741. [CrossRef] [Google Scholar]
  51. A.F. Vakakis: Nonlinear targeted energy transfer and its application to vibration mitigation, Springer, Vienna, Austria, 2010, pp. 271–300. [Google Scholar]
  52. B. Fang, T. Theurich, M. Krack, L.A. Bergman, A.F. Vakakis: Vibration suppression and modal energy transfers in a linear beam with attached vibro-impact nonlinear energy sinks. Communications in Nonlinear Science and Numerical Simulation 91 (2020) 105415. [CrossRef] [Google Scholar]
  53. T. Theurich, A.F. Vakakis, M. Krack: Predictive design of impact absorbers for mitigating resonances of flexible structures using a semi-analytical approach. Journal of Sound and Vibration 516 (2022) 116527. [CrossRef] [Google Scholar]
  54. K. Remick, D.D. Quinn, D.M. McFarland, L. Bergman, A. Vakakis: High-frequency vibration energy harvesting from repeated impulsive forcing utilizing intentional dynamic instability caused by strong nonlinearity. Journal of Intelligent Material Systems and Structures 28 (2017) 468–487. [CrossRef] [Google Scholar]
  55. K. Remick, D.D. Quinn, D.M. McFarland, L. Bergman, A. Vakakis: High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. Journal of Sound and Vibration 370 (2016) 259–279. [CrossRef] [Google Scholar]
  56. W. Tian, Y. Li, Z. Yang, P. Li, T. Zhao: Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink. International Journal of Mechanical Sciences 172 (2020) 105417. [CrossRef] [Google Scholar]
  57. P. Kakou, O. Barry: Simultaneous vibration reduction and energy harvesting of a nonlinear oscillator using a nonlinear electromagnetic vibration absorber-inerter. Mechanical Systems and Signal Processing 156 (2021) 107607. [CrossRef] [Google Scholar]
  58. X. Li, K. Liu, L. Xiong, L. Tang: Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. Journal of Sound and Vibration 503 (2021) 116104. [CrossRef] [Google Scholar]
  59. A. Blanchard, L.A. Bergman, A.F. Vakakis: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dynamics 99 (2020) 593–609. [CrossRef] [Google Scholar]
  60. Y. Pei, Y. Liu, L. Zuo: Regenerative base isolation with multi-resonant electromagnetic shunt dampers. Dynamic Systems and Control Conference – American Society of Mechanical Engineers 58295 (2017) V003T32A001. [Google Scholar]
  61. J.Y. Li, S. Zhu: Advanced vibration isolation technique using versatile electromagnetic shunt damper with tunable behavior. Engineering Structures 242 (2021) 112503. [CrossRef] [Google Scholar]
  62. K. Nusser, S. Becker: Numerical investigation of the fluid structure acoustics interaction on a simplified car model. Acta Acustica 5 (2021) 22. [CrossRef] [EDP Sciences] [Google Scholar]
  63. A. Erturk, D.J. Inman: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics 130 (2008) 041002. [CrossRef] [Google Scholar]
  64. A. Erturk, D.J. Inman: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures 18 (2009) 025009. [CrossRef] [Google Scholar]
  65. A. Abdelkefi, F. Najar, A.H. Nayfeh, S.B. Ayed: An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Materials and Structures 20 (2011) 115007. [CrossRef] [Google Scholar]
  66. H. Shorakaei, A. Shooshtari: Analytical solution and energy harvesting from nonlinear vibration of an asymmetric bimorph piezoelectric plate and optimizing the plate parameters by genetic algorithm. Journal of Intelligent Material Systems and Structures 29 (2018) 1120–1138. [CrossRef] [Google Scholar]
  67. M. Rezaee, R. Vesal: Perturbation analysis of resonant and non-resonant excitations of a beam equipped with a nonlinear vibration absorber. Iranian Journal of Mechanical Engineering 20 (2018) 109–132. [Google Scholar]
  68. F.J. Fahy, P. Gardonio: Sound and structural vibration: radiation, transmission and response, Elsevier, Oxford, UK, 2007. [Google Scholar]
  69. K. Deb, A. Pratap, S. Agarwal, T.A. Meyarivan: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2002) 182–197. [CrossRef] [Google Scholar]
  70. O. Kramer: Genetic algorithms, Springer, Cham, Switzerland, 2017. [Google Scholar]
  71. D.D. Quinn, A.L. Triplett, L.A. Bergman, A.F. Vakakis: Comparing linear and essentially nonlinear vibration-based energy harvesting. Journal of Vibration and Acoustics 133 (2011) 011001. [CrossRef] [Google Scholar]
  72. X. Huang, Z. Huang, X. Hua, Z. Chen: Investigation on vibration mitigation methodology with synergistic friction and electromagnetic damping energy dissipation. Nonlinear Dynamics 111 (2023) 18885–18910. [CrossRef] [Google Scholar]
  73. X. Huang, B. Yang: Improving energy harvesting from impulsive excitations by a nonlinear tunable bistable energy harvester. Mechanical Systems and Signal Processing 158 (2021) 107797. [CrossRef] [Google Scholar]
  74. J.S. Kim, J.R. Hill, K.W. Wang: An asymptotic approach for the analysis of piezoelectric fiber composite beams. Smart Materials and Structures 20 (2011) 25023. [Google Scholar]
  75. COMSOL Multiphysics 6.1, COMSOL AB, Stockholm, Sweden, www.comsol.com n.d. [Google Scholar]
  76. S.S. Rao: Vibration of continuous systems, John Wiley & Sons, Hoboken, NJ, USA, 2019. [CrossRef] [Google Scholar]
  77. M. Bodaghi, A.R. Damanpack, M.M. Aghdam, M. Shakeri: Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers. Composite Structures 94 (2012) 3612–3623. [CrossRef] [Google Scholar]
  78. J. Yang, H.J. Xiang: Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators. Smart Materials and Structures 16 (2007) 784. [CrossRef] [Google Scholar]
  79. A. Masoumi, A. Amiri, R. Vesal, G. Rezazadeh: Nonlinear static pull-in instability analysis of smart nano-switch considering flexoelectric and surface effects via DQM. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science 235, 2021 (2021) 7821–7835. [CrossRef] [Google Scholar]
  80. A. Amiri, R. Vesal, R. Talebitooti: Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model. International Journal of Mechanical Sciences 156 (2019) 474–485. [CrossRef] [Google Scholar]
  81. H.R. Foruzande, A. Hajnayeb, A. Yaghootian: Nanoscale piezoelectric vibration energy harvester design. AIP Advances 7 (2017) 95122. [CrossRef] [Google Scholar]
  82. Q. Wang: On buckling of column structures with a pair of piezoelectric layers. Engineering Structures 24 (2002) 199–205. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.