Open Access
Issue |
Acta Acust.
Volume 8, 2024
|
|
---|---|---|
Article Number | 43 | |
Number of page(s) | 13 | |
Section | Speech | |
DOI | https://doi.org/10.1051/aacus/2024054 | |
Published online | 30 September 2024 |
- W. Kreuzer, C.H. Kasess: Tuning of vocal tract model parameters for nasals using sensitivity functions, Journal of the Acoustical Society of America 137, 2 (2015) 1021–1031. https://doi.org/10.1121/1.4906158. [CrossRef] [PubMed] [Google Scholar]
- S. Adachi, H. Takemoto, T. Kitamura, P. Mokhtari, K. Honda: Vocal tract length perturbation and its application to male-female vocal tract shape con-version, Journal of the Acoustical Society of America 121, 6 (2007) 3874–3885. https://doi.org/10.1121/1.2730743. [CrossRef] [PubMed] [Google Scholar]
- B.H. Story: Technique for tuning vocal tract area functions based on acoustic sensitivity functions, Journal of the Acoustical Society of America 119, 2 (2006) 715–718. https://doi.org/10.1121/1.2151802. [CrossRef] [PubMed] [Google Scholar]
- B.H. Story: Vowel acoustics for speaking and singing, Acta Acustica united with Acustica 90, 4 (2004) 629–640. [Google Scholar]
- M. Mrayati, R. Carré, B. Guérin: Distinctive regions and modes: a new theory of speech production, Speech Communication 7, 3 (1988) 257–286. https://doi.org/10.1016/0167-6393(88)90073-8. [CrossRef] [Google Scholar]
- R. Carré: From an acoustic tube to speech production, Speech Communication 42 (2004) 227–240. https://doi.org/10.1016/j.specom.2003.12.001. [CrossRef] [Google Scholar]
- G. Fant, S. Pauli: Spatial characteristics of vocal tract resonance modes, in: Proceedings of Speech Communication Seminar, vol. 74, Stockholm, Sweden, 1–3 August, 1975, pp. 121–132. [Google Scholar]
- M. Arnela, S. Dabbaghchian, R. Blandin, O. Guasch, O. Engwall, A. Van Hirtum, X. Pelorson: Influence of vocal tract geometry simplifications on the numerical simulation of vowel sounds, Journal of the Acoustical Society of America 140 (2016) 1707–1718. https://doi.org/10.1121/1.4962488. [CrossRef] [PubMed] [Google Scholar]
- K. Motoki: Three-dimensional acoustic field in vocal-tract, Acoustical Science and Technology 20 (2002) 207–212. https://doi.org/10.1250/ast.23.207. [CrossRef] [Google Scholar]
- V. Ribeiro, K. Isaieva, J. Leclere, P. Vuissoz, Y. Laprie: Automatic generation of the complete vocal tract shape from the sequence of phonemes to be articulated, Speech Communication 141 (2022) 1–13. https://doi.org/10.1016/j.specom.2022.04.004. [CrossRef] [Google Scholar]
- S. Dabbaghchian, M. Arnela, O. Engwall, O. Guasch: Reconstruction of vocal tract geometries from biomechanical simulations, International Journal for Numerical Methods in Biomedical Engineering 35 (2018) e3159. https://doi.org/10.1002/cnm.3159. [Google Scholar]
- Y. Kagawa, Y. Ohtani, R. Shimoyama: Vocal tract shape identification from formant frequency spectra – a simulation using three-dimensional boundary element models, Journal of Sound and Vibration 203, 4 (1997) 581–596. [CrossRef] [Google Scholar]
- D. Mohapatra, M. Fleischer, V. Zappi, P. Birkholz, S. Fels: Three-dimensional finite-difference time-domain acoustic analysis of simplified vocal tract shapes, in: in Proceeding of the Interspeech 2022, Incheon, Korea, 18–22 September, 2022, pp. 764–768. https://doi.org/10.21437/Interspeech.2022-10649. [Google Scholar]
- M. Arnela, D. Ureña: Tuned two-dimensional vocal tracts with piriform fossae for the finite element simulation of vowels, Journal of Sound and Vibration 537 (2022) 117168. https://doi.org/10.1016/117168. [CrossRef] [Google Scholar]
- T. Vampola, J. Horáček, J.G. Švec: FE Modeling of human vocal tract acoustics. Part I: production of Czech vowels, Acta Acustica united with Acustica 94 (2008) 433–447. [CrossRef] [Google Scholar]
- T. Vampola, J. Horáček, J.G. Švec: Modeling the influence of piriform sinuses and valleculae on the vocal tract resonances and antiresonances, Acta Acustica united with Acustica 101, 3 (2015) 594–602. [CrossRef] [Google Scholar]
- A.E.D.S. Antonetti, J.D.S. Vitor, M. Guzmán, C. Calvache, A.G. Brasolotto, K.C.A. Silverio: Efficacy of a semi-occluded vocal tract exercises-therapeutic program in behavioral dysphonia: a randomized and blinded clinical trial, Journal of Voice 37, 2 (2023) 215–225. https://doi.org/10.1016/j.jvoice.2020.12.008. [CrossRef] [PubMed] [Google Scholar]
- M. Guzman, G. Miranda, C. Olavarria, S. Madrid, D. Muñoz, M. Leiva, L. Lopez, C. Bortnem: Computerized tomography measures during and after artificial lengthening of the vocal tract in subjects with voice disorders, Journal of Voice 31, 1 (2017) 124.e1–124.e10. https://doi.org/10.1016/j.jvoice.2016.01.003. [CrossRef] [PubMed] [Google Scholar]
- M. Saldias, M. Guzman, G. Miranda, A.M. Laukkanen: A computerized tomography study of vocal tract setting in hyperfunctional dysphonia and in belting, Journal of Voice 33, 4 (2019) 412–419. https://doi.org/10.1016/j.jvoice.2018.02.001. [CrossRef] [PubMed] [Google Scholar]
- T. Vampola, A.M. Laukkanen, J. Horáček, J.G. Švec: Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling, Journal of the Acoustical Society of America 129 (2011) 310–315. [CrossRef] [PubMed] [Google Scholar]
- T. Vampola, A.M. Laukkanen, J. Horáček, J.G. Švec: Finite element modelling of vocal tract changes after voice therapy, Applied and Computational Mechanics 5 (2011) 77–88. [Google Scholar]
- C. Johnson: Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge, 1987. [Google Scholar]
- G. Fant, J. Liljencrants, Q. Lin: A four-parameter model of glottal flow, STL-QPSR 26, 4 (1985) 1–13. [Google Scholar]
- A. D. Pierce: Acoustics: An introduction to its physical principles and applications, Springer International Publishing, Cham, 2019, ISBN 978-3-030-11214-1, https://doi.org/10.1007/978-3-030-11214-1. [Google Scholar]
- R.J. Guyan: Reduction of stiffness and mass matrices, American Institute of Aeronautics and Astronautics Journal 3, 2 (1965) 380. [CrossRef] [Google Scholar]
- M.A. Blair, T.S. Camino, J.M. Dickens: An iterative approach to a reduced mass matrix, in: Proceedings of the 9th International Modal Analysis Conference, Florence, Italy, 15–18 April, 1991, pp. 621–626. [Google Scholar]
- M.I. Friswell, S.D. Garvey, J.E.T. Penny: Model reduction using dynamics and iterated IRS techniques, Journal of Sound and Vibration 186, 2 (1995) 311–323. [CrossRef] [Google Scholar]
- P. Silvester: High-order polynomial triangular finite elements for potential problems, International Journal of Engineering Science 7, 8 (1969) 849–861. [CrossRef] [Google Scholar]
- K.J. Bathe: Finite elements procedures, Prentice Hall Inc., Upper Saddle River, NJ, 1996. ISBN 0-13-301458-4. [Google Scholar]
- G.C. Diwan, M.S. Mohamed: Pollution studies for high order isogeometric analysis and finite element for acoustic problems, Computer Methods in Applied Mechanics and Engineering 350 (2019) 701–718. https://doi.org/10.1016/j.cma.2019.03.031. [CrossRef] [Google Scholar]
- T. Ikävalko, A.M. Laukkanen, A. McAllister, R. Eklund, E. Lammentausta, M. Leppävuori, M.T. Nieminen: Three professional singers’ vocal tract dimensions in operatic singing, kulning, and edge – a multiple case study examining loud singing, Journal of Voice 38, 5 (2024) 1253.e11–1253.e27. https://doi.org/10.1016/j.jvoice.2022.01.024. [CrossRef] [PubMed] [Google Scholar]
- B. Story: The vocal tract in singing, in: G. Welch, D. Howard, J. Nix (Eds.), The Oxford handbook of singing, Oxford University Press, Oxford, 2016, pp. 1–21. https://doi.org/10.1093/oxfordhb/9780199660773.013.012. [Google Scholar]
- E. Yanagisawa, J. Estill, S. Kmucha, S. Leder: The contribution of aryepiglottic constriction to “ringing” voice quality – a videolaryngoscopic study with acoustic analysis, Journal of Voice 3, 4 (1989) 342–350. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.