Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 41
Number of page(s) 35
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2024019
Published online 10 December 2024
  1. D. Lafarge, N. Nemati, S. Vielpeau: Brownian motion with radioactive decay to calculate the dynamic bulk modulus of gases saturating porous media according to Biot theory. Acta Acustica United with Acustica 7 (2023) 44–73. [Google Scholar]
  2. D. Lafarge: Porous and stratified porous media linear models of propagation, introduction to part 2, and chapter 6, The equivalent fluid model, in: M. Bruneau, C. Potel (Eds.), Materials and acoustics handbook, ISTE, Wiley, London UK, Hoboken USA, 2009, pp. 147–204. [CrossRef] [Google Scholar]
  3. D. Lafarge: Porous and stratified porous media linear models of propagation, chapter 7, Biot’s model, in: M. Bruneau, C. Potel (Eds.), Materials and acoustics handbook, ISTE, Wiley, London UK, Hoboken USA, 2009, pp. 205–228. [CrossRef] [Google Scholar]
  4. D. Lafarge: Acoustic wave propagation in viscothermal fluids – an electromagnetic analogy, in: N. Jimenez, O. Umnova, J.P. Groby (Eds.), Acoustic waves in periodic structures, metamaterials, and porous media, vol. 143, Springer, Springer Nature Switzerland AG, 2021, pp. 205–272. [CrossRef] [Google Scholar]
  5. M.A. Biot: The theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher frequency range. Journal of the Acoustical Society of America 28 (1956) 168–191. [CrossRef] [Google Scholar]
  6. J.-F. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials, 2nd edn., Wiley-Blackwell, UK, 2009. [CrossRef] [Google Scholar]
  7. L.D. Landau, E. Lifshitz, L. Pitayevski: Electrodynamics of continuous media, Pergamon Press, Oxford, 1984. [Google Scholar]
  8. P. Belov, R. Marqués, S. Maslovski, I. Nefedov, M. Silveirinha, C. Simovski, S. Tretyakov: Strong spatial dispersion in wire media in the very large wavelength limit. Physical Review B 67 (2003) 113103. [CrossRef] [Google Scholar]
  9. D.L. Johnson, J. Koplik, D. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [CrossRef] [Google Scholar]
  10. D. Lafarge, P. Lemarinier, J.-F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies. Journal of the Acoustical Society of America 102 (1997) 1995. [CrossRef] [Google Scholar]
  11. M. Avellaneda, S. Torquato: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Physics of Fluids A 3 (1991) 2529. [CrossRef] [Google Scholar]
  12. L.D. Landau, E. Lifshitz: Statistical physics, Pergamon Press, London-Paris, 1959. [Google Scholar]
  13. L.D. Landau, E. Lifshitz: Fluid mechanics, Pergamon Press, London, 1987. [Google Scholar]
  14. L.D. Landau, E. Lifshitz: Mechanics, Pergamon Press, London, 1987. [Google Scholar]
  15. H. Goldstein: Classical mechanics, 1st edn., Addison-Wesley, USA, 1950. [Google Scholar]
  16. M.A. Biot, D.G. Willis: The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics 24 (1957) 594–601. [CrossRef] [Google Scholar]
  17. D.L. Johnson, T.J. Plona: Recent developments in the acoustic properties of porous media, in: Proceedings of the international school of physics Enrico Fermi, Course XCIII, 17, D. Sette (Ed.), North Holland, Amsterdam, 1986, pp. 255–290. [Google Scholar]
  18. D. Lafarge: Nonlocal dynamic homogenization of fluid-saturated metamaterials, in: Acoustic waves in periodic structures, metamaterials and porous media, vol. 143, N. Jimenez, O. Umnova, J.P. Groby (Eds.), Springer Nature Switzerland AG, 2021, pp. 273–331. [CrossRef] [Google Scholar]
  19. R. Roncen, Z.E.A. Fellah, D. Lafarge, E. Piot, F. Simon, E. Ogam, M. Fellah, C. Depollier: Acoustical modeling and bayesian inference for rigid porous media in the low-mid frequency regime. Journal of the Acoustical Society of America 144 (2018) 3084. [CrossRef] [PubMed] [Google Scholar]
  20. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70 (1991) 1975–1979. [CrossRef] [Google Scholar]
  21. D. Melrose, R. McPhedran: Electromagnetic processes in dispersive media – a treatment based on the dielectric tensor, Cambridge University Press, New York, 1991. [CrossRef] [Google Scholar]
  22. V.M. Agranovich, V.I. Ginzburg: Spatial dispersion in crystal optics and the theory of excitons, Interscience Publishers, London, 1966. [Google Scholar]
  23. B. Brouard, D. Lafarge, J.-F. Allard: A general method of modelling sound propagation in layered media. Journal of Sound and Vibration 183 (1995) 129–142. [CrossRef] [Google Scholar]
  24. M. Bruneau, C. Potel (Eds.), Materials and acoustics handbook, John Wiley & Sons, ISTE, London UK, Hoboken USA, 2009. [CrossRef] [Google Scholar]
  25. N. Martys, E. Garboczi: Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. Physical Review B 46 (1992) 6080–6090. [CrossRef] [PubMed] [Google Scholar]
  26. H.A. Lorentz:The theory of electrons and its applications to the phenomena of light and radiant heat (a course of lectures delivered in Columbia University, New York, in March and April 1906, Leipzig, B.G. Teubner, 1909). [Google Scholar]
  27. G. Russakoff: A derivation of the macroscopic Maxwell equations. American Journal of Physics 38 (1970) 1188–1195. [CrossRef] [Google Scholar]
  28. T. Lévy, E. Sanchez-Palencia: Equations and interface conditions for acoustic phenomena in porous media. Journal of Mathematical Analysis and Applications 61 (1977) 813–834. [CrossRef] [Google Scholar]
  29. R. Burridge, J.B. Keller: Poroelastisity equations derived from microstructure. Journal of the Acoustical Society of America 70 (1981) 1140. [CrossRef] [Google Scholar]
  30. D. Lafarge: Comments on “rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media”. Physics of Fluids 5 (1993) 500–502. [CrossRef] [Google Scholar]
  31. D. Lafarge: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique, PhD thesis, Université du Maine, 1993, https://cyberdoc.univ-lemans.fr/theses/1993/1993LEMA1009.pdf, in French. [Google Scholar]
  32. D.L. Johnson, J. Koplik, L.M. Schwartz: New pore-size parameter characterizing transport in porous media. Physical Review Letters 57 (1986) 2564. [CrossRef] [PubMed] [Google Scholar]
  33. C. Marle: Ecoulements monophasiques en milieux poreux. Revue de l'Institut Français du Pétrole XXII, 10 (1967) 1471–1509, in French. [Google Scholar]
  34. S. Weinberg: Gravitation and cosmology: principle and applications of the general theory of relativity, John Wiley & Sons, New York, 1972. [Google Scholar]
  35. L. Brillouin: Les Tenseurs en Mécanique et en Elasticité, Masson, Paris, 1938. [Google Scholar]
  36. G. Fournet: Electromagnétisme. Traité génie électrique (Techniques de l’ingénieur, D1020, in French), 1993. [Google Scholar]
  37. A.D. Pierce: Acoustics: an introduction to its physical principles and applications, Wiley-Blackwell, Springer Nature Switzerland AG, 1989. [Google Scholar]
  38. D. Lafarge, N. Nemati: Nonlocal maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media. Wave Motion 50 (2013) 1016–1035. [CrossRef] [Google Scholar]
  39. N. Nemati, D. Lafarge: Check on a nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid framed porous media. Wave Motion 51 (2014) 716–728. [CrossRef] [Google Scholar]
  40. N. Nemati, Y.E. Lee, D. Lafarge, A. Duclos, N. Fang: Nonlocal dynamics of dissipative phononic fluids. Physical Review B 95 (2017) 224304. [CrossRef] [Google Scholar]
  41. G. Fournet: Electromagnétisme à partir des Equations Locales, Masson, Paris, 1985. in French. [Google Scholar]
  42. V.G. Veselago: The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi 10 (1967) 509–514. [Google Scholar]
  43. V. Langlois: High-frequency permeability of porous media with thin constrictions. I. Wedge-shaped porous media. Physics of Fluids 34 (2022) 077119. [CrossRef] [Google Scholar]
  44. A. Cortis, D. Smeulders, J. Guermond, D. Lafarge: Influence of pore roughness on high-frequency permeability. Physics of Fluids 15 (2003) 1766. [CrossRef] [Google Scholar]
  45. C. Boutin: Acoustics of porous media with inner resonators. Journal of the Acoustical Society of America 134 (2013) 4717–4729. [CrossRef] [PubMed] [Google Scholar]
  46. C. Boutin, F. Becot: Theory and experiments on poro-acoustics with inner resonators. Wave Motion 54 (2015) 76–99. [CrossRef] [Google Scholar]
  47. R. Venegas, C. Boutin: Acoustics of permeo-elastic materials. Journal of Fluid Mechanics 828 (2017) 135–174. [CrossRef] [Google Scholar]
  48. R. Venegas, C. Boutin, O. Umnova: Acoustics of multiscale sorptive porous materials. Physics of Fluids 29 (2017) 082006. [CrossRef] [Google Scholar]
  49. R. Venegas, C. Boutin: Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states. Journal of Sound and Vibration 418 (2018) 221–239. [CrossRef] [Google Scholar]
  50. R. Venegas, C. Boutin: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes. Acta Acustica United with Acustica 104 (2018) 62335. [CrossRef] [Google Scholar]
  51. R. Venegas, T.G. Zielinski, G. Nunez, F.-X. Becot: Acoustics of porous composites. Composites Part B 220 (2021) 109006. [CrossRef] [Google Scholar]
  52. R. Liupekevicius, J.A.W. van Dommelen, M.G.D. Geers, V.G. Kouznetsova: An efficient multiscale method for subwavelength transient analysis of acoustic metamaterials, Philosophical Transactions of the Royal Society A 382 (2024) 20230368. [CrossRef] [PubMed] [Google Scholar]
  53. A. Alomar, D. Dragna, M.-A. Galland: Pole identification method to extract the equivalent fluid characteristics of general sound-absorbing materials, Applied Acoustics 174 (2021) 107752. [CrossRef] [Google Scholar]
  54. N. Jiménez, O. Umnova, J.P. Groby (Eds.), Acoustic waves in periodic structures, metamaterials, and porous media – from fundamentals to industrial applications (Topic in Applied Physics, vol. 143), Springer, 2021. [Google Scholar]
  55. W. Heisenberg: The physical principles of the quantum theory, S. Hirzel Verlag, University of Chicago Press, Dover Publications, USA, 1930. [Google Scholar]
  56. A.E. Scheidegger: Physics of flow through porous media, University of Toronto’ Press, Canada, 1974. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.