Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 22
Number of page(s) 9
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2024013
Published online 07 June 2024
  1. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng: Locally resonant sonic materials. Science 289, 5485 (2000) 1734–1736. [CrossRef] [Google Scholar]
  2. W. Jiang, M. Yin, Q. Liao, L. Xie, G. Yin: Three-dimensional single-phase elastic metamaterial for low-frequency and broadband vibration mitigation. International Journal of Mechanical Sciences 190 (2021) 106023. [CrossRef] [Google Scholar]
  3. N. Sui, X. Yan, T.Y. Huang, J. Xu, F.G. Yuan, Y. Jing: A lightweight yet sound-proof honeycomb acoustic metamaterial. Applied Physics Letters 106, 17 (2015) 171905. [CrossRef] [Google Scholar]
  4. Y. Li, Y. Zhang, S. Xie: A lightweight multilayer honeycomb membrane-type acoustic metamaterial. Applied Acoustics 168 (2020) 107427. [CrossRef] [Google Scholar]
  5. S. Tang, J.L. Wu, C. Lü, J. Song, Y. Jiang: Functional acoustic metamaterial using shortcut to adiabatic passage in acoustic waveguide couplers. Physical Review Applied 18, 1 (2022) 014038. [CrossRef] [Google Scholar]
  6. Muhammad, C.W. Lim: From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials. Archives of Computational Methods in Engineering 29, 2 (2022) 1137–1198. [CrossRef] [Google Scholar]
  7. C. Gao, D. Halim, X. Yi: Study of bandgap property of a bilayer membrane-type metamaterial applied on a thin plate. International Journal of Mechanical Sciences 184 (2020) 105708. [CrossRef] [Google Scholar]
  8. P. Sheng, X. Fang, J. Wen, D. Yu: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. Journal of Sound and Vibration 492 (2021) 115739. [CrossRef] [Google Scholar]
  9. K.H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, C. Daraio: Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proceedings of the National Academy of Sciences 113, 30 (2016) 8386–8390. [CrossRef] [PubMed] [Google Scholar]
  10. M. Carrara, M.R. Cacan, J. Toussaint, M.J. Leamy, M. Ruzzene, A. Erturk: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting. Smart Materials and Structures 22, 6 (2013) 065004. [Google Scholar]
  11. N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, H. Hou: Acoustic metamaterials for noise reduction: a review. Advanced Materials Technologies 7, 6 (2022) 2100698. [CrossRef] [Google Scholar]
  12. S. Kumar, H.P. Lee: Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation. Applied Physics Letters 116, 13 (2020) 134103. [CrossRef] [Google Scholar]
  13. S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, Y. Li: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. The Journal of the Acoustical Society of America 145, 1 (2019) 254. [Google Scholar]
  14. C. Cai, C.M. Mak: Acoustic performance of different Helmholtz resonator array configurations. Applied Acoustics 130 (2018) 204–209. [CrossRef] [Google Scholar]
  15. V. Achilleos, O. Richoux, G. Theocharis: Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator. The Journal of the Acoustical Society of America 140, 1 (2016) EL94. [Google Scholar]
  16. S.R. Kim, Y.H. Kim, J.H. Jang: A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. The Journal of the Acoustical Society of America 119, 4 (2006) 1933–1936. [Google Scholar]
  17. T. Lee, T. Nomura, E.M. Dede, H. Iizuka: Toyota – Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls. Physical Review Applied 11 (2019) 024022. [CrossRef] [Google Scholar]
  18. L.J. Li, B. Zheng, L.M. Zhong, J. Yang, B. Liang, J.C. Cheng: Broadband compact acoustic absorber with high-efficiency ventilation performance. Applied Physics Letters 113 (2018) 103501. [CrossRef] [Google Scholar]
  19. H. Long, Y. Cheng, X. Liu: Asymmetric absorber with multiband and broadband for low-frequency sound. Applied Physics Letters 111, 14 (2017) 143502. [CrossRef] [Google Scholar]
  20. X. Wu, K.Y. Au-Yeung, X. Li, R.C. Roberts, J. Tian, C. Hu, Y. Huang, S. Wang, Z. Yang, W. Wen: High-efficiency ventilated metamaterial absorber at low frequency. Applied Physics Letters 112, 10 (2018) 103505. [CrossRef] [Google Scholar]
  21. S. Griffin, S.A. Lane, S. Huybrechts: Coupled Helmholtz resonators for acoustic attenuation. Journal of Vibration and Acoustics 123, 1 (2001) 11–17. [CrossRef] [Google Scholar]
  22. T. Lee, T. Nomura, E.M. Dede, H. Iizuka: Asymmetric loss-induced perfect sound absorption in duct silencers. Applied Physics Letters 116, 21 (2020) 214101. [CrossRef] [Google Scholar]
  23. H. Long, C. Liu, C. Shao, Y. Cheng, J. Tao, X. Qiu, X. Liu: Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes. Journal of Sound and Vibration 479 (2020) 115371. [CrossRef] [Google Scholar]
  24. N. Gao, B. Wang, K. Lu, H. Hou: Teaching-learning-based optimization of an ultra-broadband parallel sound absorber. Applied Acoustics 178 (2021) 107969. [CrossRef] [Google Scholar]
  25. N. Gao, Z. Zhang: Optimization design and experimental verification of composite absorber with broadband and high efficiency sound absorption. Applied Acoustics 183 (2021) 108288. [CrossRef] [Google Scholar]
  26. K. Sakagami, S. Kobatake, K.I. Kano, M. Morimoto, M. Yairi: Sound absorption characteristics of a single microperforated panel absorber backed by a porous absorbent layer. Acoustics Australia 39, 3 (2011) 95–100. [Google Scholar]
  27. X. Li, B. Liu, D.J.A.A. Chang: An acoustic impedance structure consisting of perforated panel resonator and porous material for low-to-mid frequency sound absorption. Applied Acoustics 180 (2021) 108069. [CrossRef] [Google Scholar]
  28. N. Gao, J. Wu, K. Lu, H. Zhong: Hybrid composite meta-porous structure for improving and broadening sound absorption. Mechanical Systems and Signal Processing 154 (2021) 107504. [CrossRef] [Google Scholar]
  29. X. Liu, M. Liu, F. Xin: Sound absorption of a perforated panel backed with perforated porous material: Energy dissipation of Helmholtz resonator cavity. Mechanical Systems and Signal Processing 185 (2023) 109762. [CrossRef] [Google Scholar]
  30. T. Lee, T. Nomura, H. Iizuka: Damped resonance for broadband acoustic absorption in one-port and two-port systems. Scientific Reports 9, 1 (2019) 13077. [Google Scholar]
  31. C. Gao, C. Hu, J. Mei, B. Hou, X. Zhang, Z. Du, W. Wen: Barrier-free duct muffler for low-frequency sound absorption. Frontiers in Materials 9 (2022) 991959. [CrossRef] [Google Scholar]
  32. C. Gao, C. Hu, B. Hou, X. Zhang, S. Li, W. Wen: Ventilation duct silencer design for broad low-frequency sound absorption. Applied Acoustics 206 (2023) 109324. [CrossRef] [Google Scholar]
  33. Q. Xu, J. Qiao, J. Sun, G. Zhang, L. Li: A tunable massless membrane metamaterial for perfect and low-frequency sound absorption. Journal of Sound and Vibration 493 (2021) 115823. [CrossRef] [Google Scholar]
  34. H. Liu, J.H. Wu, F. Ma: Dynamic tunable acoustic metasurface with continuously perfect sound absorption. Journal of Physics D: Applied Physics 54 (2021) 365105. [CrossRef] [Google Scholar]
  35. X. Tang, S. Liang, Y. Jiang, C. Gao, Y. Huang, Y. Zhang, C. Xue, W. Wen: Magnetoactive acoustic metamaterials based on nanoparticle-enhanced diaphragm. Scientific Reports 11, 1 (2021) 22162. [CrossRef] [PubMed] [Google Scholar]
  36. X. Xiang, H. Tian, Y. Huang, X. Wu, W. Wen: Manually tunable ventilated metamaterial absorbers. Applied Physics Letters 118, 5 (2021) 053504. [CrossRef] [Google Scholar]
  37. H. Shao, H. He, Y. Chen, X. Tan, G. Chen: A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities. Applied Acoustics 157 (2020) 107022. [CrossRef] [Google Scholar]
  38. V.N. Gorshkov, O.V. Bereznykov, G.K. Boiger, P. Sareh, A.S. Fallah: Acoustic metamaterials with controllable bandgap gates based on magnetorheological elastomers. International Journal of Mechanical Sciences 238 (2023) 107829. [CrossRef] [Google Scholar]
  39. C. Bricault, Y. Meng, S. Goudé: Optimization of a silencer design using an Helmholtz resonators array in grazing incident waves for broadband noise reduction. Applied Acoustics 201 (2022) 109090. [CrossRef] [Google Scholar]
  40. S. Wonjoo, W. Zheng, F. Shanhui: Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE Journal of Quantum Electronics 40, 10 (2004) 1511–1518. [CrossRef] [Google Scholar]
  41. S. Fan, W. Suh, J.D. Joannopoulos: Temporal coupled-mode theory for the Fano resonance in optical resonators. Journal of the Optical Society of America 20, 3 (2003) 569–572. [CrossRef] [PubMed] [Google Scholar]
  42. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos: Coupling of modes analysis of resonant channel add-drop filters. IEEE Journal of Quantum Electronics 35, 9 (1999) 1322–1331. [CrossRef] [Google Scholar]
  43. L. Kela: Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system. Archive of Applied Mechanics 79 (2009) 1115–1125. [CrossRef] [Google Scholar]
  44. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of acoustics. John Wiley & Sons, 2000. [Google Scholar]
  45. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos: Coupling of modes analysis of resonant channel add-drop filters. IEEE Journal of Quantum Electronics 35, 9 (1999) 1322–1331. [CrossRef] [Google Scholar]
  46. N. Kino: Further investigations of empirical improvements to the Johnson–Champoux–Allard model. Applied Acoustics 96 (2015) 153–170. [CrossRef] [Google Scholar]
  47. B.H. Song, J.S. Bolton: A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America 107, 3 (2000) 1131–1152. [CrossRef] [PubMed] [Google Scholar]
  48. B. Yousefzadeh, M. Mahjoob, N. Mohammadi, A. Shahsavari: An experimental study of sound transmission loss (STL) measurement techniques using an impedance tube. Journal of the Acoustical Society of America 123, 5 (2008) 3119. [CrossRef] [Google Scholar]
  49. A. Ciochon, J. Kennedy, R. Leiba, L. Flanagan, M. Culleton: The impact of surface roughness on an additively manufactured acoustic material: An experimental and numerical investigation. Journal of Sound and Vibration 546 (2023) 117434. [CrossRef] [Google Scholar]
  50. M. Yang, S. Chen, C. Fu, P. Sheng: Optimal sound-absorbing structures. Materials Horizons 4, 4 (2017) 673–680. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.