Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 32
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2024040
Published online 30 August 2024
  1. R. Lyon, R. DeJong, M. Heckl: Theory and application of statistical energy analysis, Butterworth-Heinemann, Oxford, 1995. [Google Scholar]
  2. X. Chen, D. Wang, Z. Ma: Simulation on a car interior aerodynamic noise control based on statistical energy analysis, Chinese Journal of Mechanical Engineering 25 (2012) 1016–1021. [CrossRef] [Google Scholar]
  3. K. Hattori, K. Nakamachi, M. Sanada: Prediction of underwater sound radiated from ship’s hull by using statistical energy analysis, Proceedings of Inter-Noise 85 (1985) 645. [Google Scholar]
  4. L. Ji, X. Sheng, X. Xiao, Z. Wen, X. Jin: A review of mid-frequency vibro-acoustic modelling for high-speed train extruded aluminium panels as well as the most recent developments in hybrid modelling techniques, Journal of Modern Transportation 23 (2015) 159–168. [CrossRef] [Google Scholar]
  5. G. Borello: Prediction of sound transmission in aircraft over the mid and high frequency range, INTER-NOISE and NOISE-CON Congress and Conference Proceedings 258 (2018) 5115–5124. [Google Scholar]
  6. R.J. Craik: The prediction of sound transmission through buildings using statistical energy analysis, Journal of Sound and Vibration 82 (1982) 505–516. [CrossRef] [Google Scholar]
  7. P. Nieradka, A. Dobrucki: Insertion loss of enclosures with lined slits, Euronoise Conference Proceedings 2018, Hersonissos, Crete, Greece, 27–31 May, 2018. [Google Scholar]
  8. N. Lalor: Experimental statistical energy analysis: a tool for the reduction of machinery noise, Journal of the Acoustical Society of America 99 (1996) 2568–2574. [CrossRef] [Google Scholar]
  9. A.J. Price, M.J. Crocker: Sound transmission through double panels using statistical energy analysis, Journal of the Acoustical Society of America 47 (1970) 683–693. [CrossRef] [Google Scholar]
  10. R. Zarate, E. Matus, M. Lopez, L. Ballesteros: Design of quieter kitchen appliances: Sound pressure level modeling and validation of a household refrigerator using statistical energy analysis, Proceedings of Meetings on Acoustics 30 (2017) 030009. [CrossRef] [Google Scholar]
  11. A.C. Pankaj: Numerical and experimental investigations on damage detection in joints based on statistical energy analysis like approach, PhD thesis, Department of Mechanical Engineering, National Institute of Technology Karnataka, Mangalore, 2019. [Google Scholar]
  12. M. Yoganandh, J. Nagaraja, B. Venkatesham: Prediction of insertion loss of lagging in rectangular duct using statistical energy analysis, Noise Control Engineering Journal 67 (2019) 438–446. [CrossRef] [Google Scholar]
  13. R. Zarate, J. Poblet-Puig, M. Ortega, M. Lopez-Parra: Statistical energy analysis model for sound pressure level prediction on refrigerators, Acoustics Australia 48 (2020) 233–250. [CrossRef] [Google Scholar]
  14. D. Bies, S. Hamid, In situ determination of loss and coupling loss factors by the power injection method, Journal of Sound and Vibration 70 (1980) 187–204. [CrossRef] [Google Scholar]
  15. F.J. Fahy, H.M. Ruivo: Determination of statistical energy analysis loss factors by means of an input power modulation technique, Journal of Sound and Vibration 203 (1997) 763–779. [CrossRef] [Google Scholar]
  16. J. Sun: Measuring Method of Dissipation and Coupling Loss Factors for Complex Structures, Elsevier Science, Chinese Science Abstracts Series A 4 (1995) 24. [Google Scholar]
  17. J. Gu, M. Sheng: Improved energy ratio method to estimate coupling loss factors for series coupled structure, Journal of Mechanical Engineering 45 (2015) 37–40. [CrossRef] [Google Scholar]
  18. J. Cuschieri, J. Sun: Use of statistical energy analysis for rotating machinery, part I: determination of dissipation and coupling loss factors using energy ratios, Journal of Sound and Vibration 170 (1994) 181–190. [CrossRef] [Google Scholar]
  19. O. Guasch: A direct transmissibility formulation for experimental statistical energy analysis with no input power measurements, Journal of Sound and Vibration 330 (2011) 6223–6236. [CrossRef] [Google Scholar]
  20. F. Fahy: An alternative to the SEA coupling loss factor: rationale and method for experimental determination, Journal of Sound and Vibration 214 (1998) 261–267. [CrossRef] [Google Scholar]
  21. R. Ming: An experimental comparison of the SEA power injection method and the power coefficient method, Journal of Sound and Vibration 282 (2005) 1009–1023. [CrossRef] [Google Scholar]
  22. R. Ming: The measurement of coupling loss factors using the structural intensity technique, Journal of the Acoustical Society of America 103 (1998) 401–407. [CrossRef] [Google Scholar]
  23. C. Cacciolati, J.L. Guyader: Measurement of SEA coupling loss factors using point mobilities, Philosophical transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences 346 (1994) 465–475. [Google Scholar]
  24. C. Hopkins: Statistical energy analysis of coupled plate systems with low modal density and low modal overlap, Journal of Sound and Vibration 251 (2002) 193–214. [CrossRef] [Google Scholar]
  25. C.H. Hodges, P. Nash, J. Woodhouse: Measurement of coupling loss factors by matrix fitting: an investigation of numerical procedures, Applied Acoustics 22 (1987) 47–69. [CrossRef] [Google Scholar]
  26. N. Lalor: Measurement of SEA loss factors on a fully assembled structures, Technical report, Vol. 08, Institute of Sound and Vibration Research, University of Southampton, 1987. [Google Scholar]
  27. M.F. de las Heras, M.C. Manguan, E.R. Millan, L.F. de las Heras, F.S. Hidalgo: Determination of SEA loss factors by monte carlo filtering, Journal of Sound and Vibration 479 (2020) 115–348. [Google Scholar]
  28. N.M. Rosenbluth, A.W. Rosenbluth: Monte Carlo calculation of the average extension of molecular chains, Journal of Chemical Physics 23 (1955) 356–359. [CrossRef] [Google Scholar]
  29. W. Moller, W. Eckstein: Tridyn – a TRIM simulation code including dynamic composition changes, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2 (1984) 814–818. [CrossRef] [Google Scholar]
  30. P. Ojeda, M. Garcia, A. Londono, N.Y Chen: Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate states, Biophysical Journal 96 (2009) 1076–1082. [CrossRef] [PubMed] [Google Scholar]
  31. J.G. Amar: The Monte Carlo method in science and engineering, Computing in Science and Engineering 8, 2 (2006) 9–19. [CrossRef] [Google Scholar]
  32. P. Nieradka, A. Dobrucki: Study on the effectiveness of monte carlo filtering when correcting negative SEA loss factors, Archives of Acoustics 48 (2023) 201–218. [Google Scholar]
  33. P. Nieradka, A. Dobrucki: A modification of the monte carlo filtering approach for correcting negative SEA loss factors, Acoustics 4 (2022) 1028–1044. [CrossRef] [Google Scholar]
  34. C. Churchill, T. Bednar, H. Müllner, M. Neusser, S. Hinterseer: A parametric study of the acoustic properties of thermal cladding systems, Applied Acoustics 173 (2021) 107656. [CrossRef] [Google Scholar]
  35. C.P. Hopkins: Using statistical energy analysis to predict sound insulation in buildings, Proceedings of the Institute of Acoustics 38 (2016) 272–279. [Google Scholar]
  36. C. Churchill, C. Hopkins: Prediction of airborne sound transmission across a timber-concrete composite floor using statistical energy analysis, Applied Acoustics 110 (2016) 145–159. [CrossRef] [Google Scholar]
  37. P. Nieradka, A. Dobrucki, B. Chmielewski, Assessing the quality of corrected negative SEA loss factors using TLF criterion, in: Proceedings of the 10th Convention of the European Acoustics Association, Forum Acusticum 2023, Politecnico di Torino, Torino, Italy, September 11–15, 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.