Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 48
Number of page(s) 15
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2024038
Published online 08 October 2024
  1. C.J. Plack, A.J. Oxenham: Overview: the present and future of pitch, in: C.J. Plack, R.R. Fay, A.J. Oxenham, A.N. Popper (Eds.), Pitch, Springer, New York, NY, 2005. ISBN 978-0-387-28958-8, https://doi.org/10.1007/0-387-28958-5_1. [CrossRef] [Google Scholar]
  2. K. Siedenburg, C. Saitis, S. McAdams, A.N. Popper, R.R. Fay: Timbre: acoustics, perception, and cognition. Springer Handbook of Auditory Research, Springer Nature, Heidelberg, Germany, 2019. https://doi.org/10.1007/978-3-030-14832-4. [CrossRef] [Google Scholar]
  3. K. Siedenburg, S. Jacobsen, C. Reuter: Spectral envelope position and shape in orchestral instrument sounds, Journal of the Acoustical Society of America 149, 6 (2021) 3715–3727. https://doi.org/10.1121/10.0005088. [CrossRef] [PubMed] [Google Scholar]
  4. S. McAdams: The perceptual representation of timbre, in: K. Siedenburg, C. Saitis, S. McAdams, A. Popper, R. Fay (Eds.), Timbre: acoustics, perception, and cognition, Springer, Cham, 2019, pp. 23–57. https://doi.org/10.1007/978-3-030-14832-4_2. [CrossRef] [Google Scholar]
  5. E.J. Allen, A.J. Oxenham: Symmetric interactions and interference between pitch and timbre, Journal of the Acoustical Society of America 135, 3 (2014) 1371–1379. https://doi.org/10.1121/1.4863269. [CrossRef] [PubMed] [Google Scholar]
  6. K. Siedenburg, J. Graves, D. Pressnitzer: A unitary model of auditory frequency change perception, PLoS Computational Biology 19, 1 (2023) 1–30. https://doi.org/10.1371/journal.pcbi.1010307. [Google Scholar]
  7. D. Maurer: Acoustics of the VowelPreliminaries, Peter Lang International Academic Publishers, 2016. https://doi.org/10.3726/978-3-0343-2391-8. [CrossRef] [Google Scholar]
  8. M.J. McPherson, J.H. McDermott: Relative pitch representations and invariance to timbre, Cognition 232 (2023) 105327. https://doi.org/10.1016/j.cognition.2022.105327. [CrossRef] [PubMed] [Google Scholar]
  9. S. McAdams, C. Douglas, N.N. Vempala: Perception and modeling of affective qualities of musical instrument sounds across pitch registers, Frontiers in Psychology 8 (2017) 153. https://doi.org/10.3389/fpsyg.2017.00153. [CrossRef] [PubMed] [Google Scholar]
  10. S. McAdams, E. Thoret, G. Wang, M. Montrey: Timbral cues for learning to generalize musical instrument identity across pitch register, Journal of the Acoustical Society of America 153, 2 (2023) 797–811. https://doi.org/10.1121/10.0017100. [CrossRef] [PubMed] [Google Scholar]
  11. S. McAdams, K. Siedenburg: Perception and cognition of musical timbre, in: D.J. Levitin, P.J. Rentfrow (Eds.), Foundations in music psychology: theory and research, MIT Press, Cambridge, MA, 2019, pp. 71–120. [Google Scholar]
  12. M. Caetano, C. Saitis, K. Siedenburg: Audio content descriptors of timbre, in: K. Siedenburg, C. Saitis, S. McAdams, A. Popper, R. Fay (Eds.), Timbre: acoustics, perception, and cognition, Springer, Cham, 2019, pp. 297–333. https://doi.org/10.1007/978-3-030-14832-4_11. [CrossRef] [Google Scholar]
  13. D. Müllensiefen, B. Gingras, J. Musil, L. Stewart: The musicality of non-musicians: an index for assessing musical sophistication in the general population, PLoS One 9, 2 (2014) e89642. https://doi.org/10.1371/journal.pone.0089642. [CrossRef] [PubMed] [Google Scholar]
  14. A.E. Milne, R. Bianco, K.C. Poole, S. Zhao, A.J. Oxenham, A.J. Billig, M. Chait: An online headphone screening test based on dichotic pitch, Behavior Research Methods 53, 4 (2021) 1551–1562. https://doi.org/10.3758/s13428-020-01514-0. [CrossRef] [PubMed] [Google Scholar]
  15. B.T. West, K.B. Welch, A.T. Galecki: Linear mixed models: a practical guide using statistical software, Chapman and Hall/CRC, Boca Raton, FL, 2022. https://doi.org/10.1201/9781003181064. [CrossRef] [Google Scholar]
  16. D. Bates, M. Mächler, B. Bolker, S. Walker: Fitting linear mixed-effects models using lme4, Journal of Statistical Software 67, 1 (2015) 1–48. https://doi.org/10.18637/jss.v067.i01. [CrossRef] [Google Scholar]
  17. K.M. Steele, A.K. Williams: Is the bandwidth for timbre invariance only one octave? Music Perception 23, 3 (2006) 215–220. https://doi.org/10.1525/mp.2006.23.3.215. [CrossRef] [Google Scholar]
  18. J.H. McDermott, A.F. Schultz, E.A. Undurraga, R.A. Godoy: Indifference to dissonance in native amazonians reveals cultural variation in music perception, Nature 535, 7613 (2016) 547–550. https://doi.org/10.1038/nature18635. [CrossRef] [PubMed] [Google Scholar]
  19. P. Harrison, M.T. Pearce: Simultaneous consonance in music perception and composition, Psychological Review 127, 2 (2020) 216–244. https://doi.org/10.1037/rev0000169. [CrossRef] [PubMed] [Google Scholar]
  20. C. Saitis, K. Siedenburg: Brightness perception for musical instrument sounds: relation to timbre dissimilarity and source-cause categories, Journal of the Acoustical Society of America 148, 4 (2020) 2256–2266. https://doi.org/10.1121/10.0002275. [CrossRef] [PubMed] [Google Scholar]
  21. E. Schubert, J. Wolfe: Does timbral brightness scale with frequency and spectral centroid?, Acta Acustica united with Acustica 92, 5 (2006) 820–825. [Google Scholar]
  22. J. Marozeau, A. de Cheveigné: The effect of fundamental frequency on the brightness dimension of timbre, Journal of the Acoustical Society of America 121, 1 (2007) 383–387. https://doi.org/10.1121/1.2384910. [CrossRef] [PubMed] [Google Scholar]
  23. A. Röbel, X. Rodet: Efficient spectral envelope estimation and its application to pitch shifting and envelope preservation, in: International Conference on Digital Audio Effects, Madrid, Spain, 2005, pp. 30–35. https://hal.science/hal-01161334. [Google Scholar]
  24. D. Huron: Tone and voice: A derivation of the rules of voice-leading from perceptual principles, Music Perception 19, 1 (2001) 1–64. https://doi.org/10.1525/mp.2001.19.1.1. [CrossRef] [Google Scholar]
  25. D. Huron, R. Parncutt: An improved model of tonality perception incorporating pitch salience and echoic memory, Psychomusicology: A Journal of Research in Music Cognition 12, 2 (1993) 154. https://doi.org/10.1037/h0094110. [CrossRef] [Google Scholar]
  26. J. Meyer: Akustik und musikalische Aufführungspraxis: Leitfaden für Akustiker, Tonmeister, Musiker, Instrumentenbauer und Architekten, Bochinsky, Bergkirchen, Germany, 1995. [Google Scholar]
  27. K. Siedenburg: Specifying the perceptual relevance of onset transients for musical instrument identification, Journal of the Acoustical Society of America 145, 2 (2019) 1078–1087. https://doi.org/10.1121/1.5091778. [CrossRef] [PubMed] [Google Scholar]
  28. K. Siedenburg, M.R. Schädler, D. Hülsmeier: Modeling the onset advantage in musical instrument recognition, Journal of the Acoustical Society of America 146, 6 (2019) EL523–EL529. https://doi.org/10.1121/1.5141369. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.