Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
|
|
---|---|---|
Article Number | 59 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/aacus/2024055 | |
Published online | 08 November 2024 |
- R. Bader: Computational mechanics of the classical guitar, Springer Berlin, Heidelberg, Germany2006. [Google Scholar]
- O. Christensen: Quantitative models for low frequency guitar function. Journal of Guitar Acoustics 6 (1982) 10–25. [Google Scholar]
- J.E. Popp: Four mass coupled oscillator guitar model. The Journal of the Acoustical Society of America 131, 1 (2012) 829–836. [CrossRef] [PubMed] [Google Scholar]
- R. Mores: Sound tuning in asymmetrically braced guitars. The Journal of the Acoustical Society of America 149, 2 (2021) 1041–1057. [CrossRef] [PubMed] [Google Scholar]
- E. Kaselouris, M. Bakarezos, M. Tatarakis, N.A. Papadogiannis, V. Dimitriou: A review of finite element studies in string musical instruments. Acoustics 4, 1 (2022) 183–202. [CrossRef] [Google Scholar]
- M.J. Elejabarrieta, A. Ezcurra, C. Santamarıa: Coupled modes of the resonance box of the guitar. The Journal of the Acoustical Society of America 111, 5 (2002) 2283–2292. [CrossRef] [PubMed] [Google Scholar]
- A. Ezcurra, M. Elejabarrieta, C. Santamaria: Fluid-structure coupling in the guitar box: numerical and experimental comparative study. Applied Acoustics 66, 4 (2005) 411–425. [CrossRef] [Google Scholar]
- J.A. Torres, R.R. Boullosa: Influence of the bridge on the vibrations of the top plate of a classical guitar. Applied Acoustics 70, 11–12 (2009) 1371–1377. [CrossRef] [Google Scholar]
- D. Salvi, S. Gonzalez, F. Antonacci, A. Sarti: Modal analysis of free archtop guitar top plates. The Journal of the Acoustical Society of America 150, 2 (2021) 1505–1513. [CrossRef] [PubMed] [Google Scholar]
- A. Brauchler, S. Gonzalez, M. Vierneisel, P. Ziegler, F. Antonacci, A. Sarti, P. Eberhard: Model-predicted geometry variations to compensate material variability in the design of classical guitars. Scientific Reports 13, 1 (2023) 12766. [CrossRef] [PubMed] [Google Scholar]
- R. Viala, V. Placet, S. Le Conte, S. Vaiedelich, S. Cogan: Model-based decision support methods applied to the conservation of musical instruments: application to an antique cello. In: Model validation and uncertainty quantification, Volume 3: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019, pp. 223–227, Springer, 2020. [Google Scholar]
- R. Viala, V. Placet, S. Cogan, E. Foltête: Model-based effects screening of stringed instruments. In: Model validation and uncertainty quantification, Volume 3: Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016, pp. 151–157, Springer, 2016. [Google Scholar]
- V. Chatziioannou: Reconstruction of an early viola da gamba informed by physical modeling. The Journal of the Acoustical Society of America 145, 6 (2019) 3435–3442. [CrossRef] [PubMed] [Google Scholar]
- S. Gonzalez, D. Salvi, F. Antonacci, A. Sarti: Eigenfrequency optimisation of free violin plates. The Journal of the Acoustical Society of America 149, 3 (2021) 1400–1410. [CrossRef] [PubMed] [Google Scholar]
- P. Dumond, N. Baddour: Effects of using scalloped shape braces on the natural frequencies of a brace-soundboard system. Applied Acoustics 73, 11 (2012) 1168–1173. [CrossRef] [Google Scholar]
- R. Viala, V. Placet, S. Cogan: Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3d velocity fields measurements (femu-3dvf): application to bio-based composite violin soundboards. Composites Part A: Applied Science and Manufacturing 106 (2018) 91–103. [CrossRef] [Google Scholar]
- H. Tahvanainen, J. Pölkki, H. Penttinen, V. Välimäki: Finite element model of a kantele with improved sound radiation. In: Proceedings of the Stockholm Music Acoustic Conference, July 30–August 3, Stockholm, Sweden, 2013, pp. 193–198. [Google Scholar]
- A. Brauchler, D. Hose, P. Ziegler, M. Hanss, P. Eberhard: Distinguishing geometrically identical instruments: possibilistic identification of material parameters in a parametrically model order reduced finite element model of a classical guitar. Journal of Sound and Vibration 535 (2022) 117071. [CrossRef] [Google Scholar]
- A.C. Antoulas: Approximation of large-scale dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, USA, 2005. [CrossRef] [Google Scholar]
- Abaqus, Analysis User’s Guide, Version 6.14. Simulia, 2014. [Google Scholar]
- P. Cillo, A. Brauchler, S. Gonzalez, P. Ziegler, F. Antonacci, A. Sarti, P. Eberhard: A data-based method enhancing a parametrically model order reduced finite element model of a classical guitar. In: Proceedings of Forum Acusticum 2023, September 11–15, Turin, Italy, 2023. [Google Scholar]
- X. Xie, C. Webster, T. Iliescu: Closure learning for nonlinear model reduction using deep residual neural network. Fluids 5, 1 (2020) 39. [CrossRef] [Google Scholar]
- K. Kaheman, E. Kaiser, B. Strom, J.N. Kutz, S.L. Brunton: Learning discrepancy models from experimental data. Preprint: arXiv, 2019. https://doi.org/10.48550/arXiv.1909.08574. [Google Scholar]
- P.D. Arendt, D.W. Apley, W. Chen: Quantification of model uncertainty: calibration, model discrepancy, and identifiability. Journal of Mechanical Design 134, 10 (2012) 100908. [CrossRef] [Google Scholar]
- S. Gonzalez, D. Salvi, D. Baeza, F. Antonacci, A. Sarti: A data-driven approach to violin making. Scientific Reports 11, 1 (2021) 9455. [CrossRef] [PubMed] [Google Scholar]
- D. Salvi, S. Gonzalez, F. Antonacci, A. Sarti: Parametric optimization of violin top plates using machine learning. In: 27th International Congress on Sound and Vibration ICSV 2021, July 11–16, 2021. [Google Scholar]
- D.G. Badiane, S. Gonzalez, R. Malvermi, F. Antonacci, A. Sarti: A neural network-based method for spruce tonewood characterization. The Journal of the Acoustical Society of America 154, 2 (2023) 730–738. [CrossRef] [PubMed] [Google Scholar]
- J. Rettberg, D. Wittwar, P. Buchfink, A. Brauchler, P. Ziegler, J. Fehr, B. Haasdonk: Port-Hamiltonian fluid-structure interaction modeling and structure-preserving model order reduction of a classical guitar. Mathematical and Computer Modelling of Dynamical Systems 29, 1 (2023) 116–148. [CrossRef] [Google Scholar]
- D. Konopka, C. Gebhardt, M. Kaliske: Numerical modelling of wooden structures. Journal of Cultural Heritage 27 (2017) S93–S102. [CrossRef] [Google Scholar]
- A. Brauchler, P. Ziegler, P. Eberhard: An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data. The Journal of the Acoustical Society of America 149, 6 (2021) 4450–4462. [CrossRef] [PubMed] [Google Scholar]
- D.E. Kretschmann: Mechanical properties of wood, in: Wood handbook: wood as an engineering material, Forest Products Laboratory, Madison, USA, 2010. [Google Scholar]
- P. Benner, S. Gugercin, K. Willcox: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review 57, 4 (2015) 483–531. [CrossRef] [Google Scholar]
- O.C. Zienkiewicz, R.L. Taylor: The finite element method for solid and structural mechanics, Butterworth-Heinemann, Elsevier, Oxford, UK, 2005. [Google Scholar]
- A. Brauchler: Predictive computational models of classical guitars: modeling, order-reduction, simulation and experimentation, vol. 2023, 78 of Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart. Shaker Verlag, 2023. [Google Scholar]
- U. Baur, C. Beattie, P. Benner, S. Gugercin: Interpolatory projection methods for parameterized model reduction. SIAM Journal on Scientific Computing 33, 5 (2011) 2489–2518. [CrossRef] [Google Scholar]
- I.M. Sobol’: On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7, 4 (1967) 784–802. [Google Scholar]
- M. Pastor, M. Binda, T. Harčarik: Modal assurance criterion. Procedia Engineering 48 (2012) 543–548. [CrossRef] [Google Scholar]
- J. Kennedy, R. Eberhart: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, 1995, pp. 1942–1948. [CrossRef] [Google Scholar]
- T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh, S. Mirjalili: Particle swarm optimization: a comprehensive survey. IEEE Access 10 (2022) 10031–10061. [CrossRef] [Google Scholar]
- M.T. Hagan, M.B. Menhaj: Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5, 6 (1994) 989–993. [CrossRef] [PubMed] [Google Scholar]
- J. Meyer: Quality aspects of the guitar tone. In: Function, construction and quality of the guitar, E.V. Jansson (Ed.), Royal Swedish Academy of Music, Stockholm, 1983, pp. 51–75. [Google Scholar]
- H. Tahvanainen, H. Matsuda, R. Shinoda: Numerical simulation of the acoustic guitar in virtual prototyping. Proceedings of ISMA 2019 (2019) 13–17. [Google Scholar]
- M. Lercari, S. Gonzalez, C. Espinoza, G. Longo, F. Antonacci, A. Sarti: Using mechanical metamaterials in guitar top plates: a numerical study. Applied Sciences 12, 17 (2022) 8619. [CrossRef] [Google Scholar]
- G. Longo, S. Gonzalez, F. Antonacci, A. Sarti: Predicting the acoustics of archtop guitars using an ai-based algorithm trained on fem simulations. In: Proceedings of Forum Acusticum 2023, September 11–15, Turin, Italy, 2023. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.