Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 45
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2024035
Published online 30 September 2024
  1. B. Lawergren: On the motion of bowed violin strings, Acta Acustica united with Acustica 44, 3 (1980) 194–206. [Google Scholar]
  2. K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acustica united with Acustica 88, 6 (2002) 970–985. [Google Scholar]
  3. J. Woodhouse, P. Galluzzo: The bowed string as we know it today, Acta Acustica united with Acustica 90, 4 (2004) 579–589. [Google Scholar]
  4. A. Askenfelt: Measurement of bow motion and bow force in violin playing, Journal of the Acoustical Society of America 80, 4 (1986) 1007–1015. [CrossRef] [Google Scholar]
  5. A. Askenfelt: Measurement of the bowing parameters in violin playing. II: bow–bridge distance, dynamic range, and limits of bow force, Journal of the Acoustical Society of America 86, 2 (1989) 503–516. [CrossRef] [Google Scholar]
  6. M. Demoucron: On the control of virtual violins – physical modelling and control of bowed string instruments, PhD thesis, Université Pierre et Marie Curie – Paris VI; Royal Institute of Technology, Stockholm, 2008. [Google Scholar]
  7. E. Schoonderwaldt: The violinist’s sound palette: spectral centroid, pitch flattening and anomalous low frequencies, Acta Acustica united with Acustica 95, 5 (2009) 901–914. [CrossRef] [Google Scholar]
  8. E. Maestre: Modeling instrumental gestures: an analysis/synthesis framework for violin bowing, PhD thesis, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 2009. [Google Scholar]
  9. C.V. Raman: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results, part I, Indian Association for the Cultivation of Science 15 (1918) 243–276. [Google Scholar]
  10. J.C. Schelleng: The bowed string and the player, Journal of the Acoustical Society of America 53, 1 (1973) 26–41. [CrossRef] [Google Scholar]
  11. A. Cronhjort: A computer-controlled bowing machine (mums), Speech, Music and Hearing Quarterly Progress and Status Report 33, 2–3 (1992) 61–66. [Google Scholar]
  12. P. Galluzzo, J. Woodhouse: High-performance bowing machine tests of bowed-string transients, Acta Acustica united with Acustica 100, 1 (2014) 139–153. [CrossRef] [Google Scholar]
  13. R. Mores: Precise cello bowing pendulum, in: Proceedings of Third Vienna Talk on Music Acoustics, vol. 106, Vienna, Austria, 16–19 Sept 2015. [Google Scholar]
  14. T. Rossing: The Science of String Instruments, Springer, New York, 2010. [CrossRef] [Google Scholar]
  15. E. Schoonderwaldt, M. Demoucron: Extraction of bowing parameters from violin performance combining motion capture and sensors, Journal of the Acoustical Society of America 126, 5 (2009) 2695–2708. [CrossRef] [PubMed] [Google Scholar]
  16. A. Lampis, A. Mayer, V. Chatziioannou: Assessing playability limits of bowed-string transients using experimental measurements, Acta Acustica (2024). https://doi.org/10.1051/aacus/2024034. [Google Scholar]
  17. A. Askenfelt, K. Guettler: The bouncing bow: An experimental study, Journal of the Catgut Acoustical Society 3 (1998) 3–8. [Google Scholar]
  18. A. Mayer, A. Lampis: A versatile monochord setup: An industrial robotic arm as bowing and plucking device, IWK Tech Report 1-2024, University of Music and Performing Arts Vienna, 2024. https://doi.org/10.21939/iwk-tech-report-1-2024. [Google Scholar]
  19. S. Kemper: Locating creativity in differing approaches to musical robotics, Frontiers in Robotics and AI 8 (2021) 647028. [CrossRef] [PubMed] [Google Scholar]
  20. K. Shibuya, S. Matsuda, A. Takahara: Toward developing a violin playing robot-bowing by anthropomorphic robot arm and sound analysis, in: Proceedings of 16th IEEE Int. Symposium on Robot and Human Interactive Communication, Jeju, Korea (South), 26–29 August, 2007, IEEE, pp. 763–768. [Google Scholar]
  21. S. Jordà: Afasia: the ultimate homeric oneman-multimedia-band, in: Proceedings of New Interfaces for Musical Expression, NIME-02, Dublin, Ireland, May 24–26, Media Lab Europe, 2002, pp. 132–137. [Google Scholar]
  22. M.M. Wanderley: Motion capture of music performances, in: G.E. McPherson (Ed.), The Oxford handbook of music performance, Oxford University Press, 2022, pp. 465–494. [CrossRef] [Google Scholar]
  23. J. Van der Linden, E. Schoonderwaldt, J. Bird, R. Johnson: Musicjacket-combining motion capture and vibrotactile feedback to teach violin bowing, IEEE Transactions on Instrumentation and Measurement 60, 1 (2010) 104–113. [Google Scholar]
  24. J. Rozé, M. Aramaki, R. Kronland-Martinet, S. Ystad: Exploring the perceived harshness of cello sounds by morphing and synthesis techniques, Journal of the Acoustical Society of America 141, 3 (2017) 2121–2136. [CrossRef] [PubMed] [Google Scholar]
  25. T. Wofford: Study of the interaction between the musician and the instrument. Application to the playability of the cello, PhD thesis, Sorbonne Université, Paris, 2018. [Google Scholar]
  26. J. Rozé, M. Aramaki, R. Kronland-Martinet, S. Ystad: A technological platform for analyzing and improving musiciansâ sound-gesture interactions, in: e-Forum Acusticum 2020, Lyon, France, 7–11 December, 2020, pp. 439–447. [Google Scholar]
  27. I. Wollman, C. Fritz, J. Poitevineau: Influence of vibrotactile feedback on some perceptual features of violins, Journal of the Acoustical Society of America 136, 2 (2014) 910–921. [CrossRef] [PubMed] [Google Scholar]
  28. A. Askenfelt, E.V. Jansson: On vibration sensation and finger touch in stringed instrument playing, Music Perception 9, 3 (1992) 311–349. [CrossRef] [Google Scholar]
  29. M. Pàmies-Vilà, E. Matusiak, V. Chatziioannou, A. Mayer: A cello bowing playback device? Motion capture meets robotic arm, in: 10th Convention of the European Acoustics Association, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  30. Universal Robots: File: UR5e Technical Specifications, UR5e Product Fact Sheet – July 2021, 2021. Available at https://www.universal-robots.com/products/ur5-robot/ (accessed 06 February, 2024). [Google Scholar]
  31. P.I. Corke, W. Jachimczyk, R. Pillat: Robotics, vision and control: fundamental algorithms in MATLAB, vol. 73, Springer, 2011. [CrossRef] [Google Scholar]
  32. A.R. Jensenius: Methods for studying music-related body motion, in: R. Bader (Ed.), Springer handbook of systematic musicology, Springer, Berlin, Heidelberg, 2018, pp. 805–818. [CrossRef] [Google Scholar]
  33. M. Pàmies-Vilà, A. Scheiblauer, A. Mayer, V. Chatziioannou: A framework for the analysis of bowing actions with increased realisticness, in: Proceedings of the 24th International Congress on Acoustics, Gyeongju, Korea, 24–28, October, 2022. [Google Scholar]
  34. Universal robots support: Real-time data exchange (RTDE) guide, 2022. Available at https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/ (accessed 22 January, 2024). [Google Scholar]
  35. A. Mayer, M. Pàmies-Vilà, V. Chatziioannou: The universal robots real-time data exchange (RTDE) and LabVIEW, Technical report, Department of Music Acoustics – Wiener Klangstil (IWK), 2022. https://doi.org/10.13140/RG.2.2.14177.99684. [Google Scholar]
  36. A. Scheiblauer, A. Mayer, M. Pàmies-Vilà: Investigating the cello position, bow motion and cellist posture using motion capture, Proceedings of Meetings on Acoustics, Fourth Vienna Talk on Music Acoustics, 49 (2022) 035013. [CrossRef] [Google Scholar]
  37. H.F. Pollard, E.V. Jansson: A tristimulus method for the specification of musical timbre, Acta Acustica united with Acustica 51, 3 (1982) 162–171. [Google Scholar]
  38. A. Mayer, M. Pamies-Vila, V. Chatziioannou: Ein Roboterarm spielt Cello, OCG Journal 48, 4 (2023) 16–19. [Google Scholar]
  39. E. Fallowfield: Cello map: a handbook of cello technique for performers and composers, PhD thesis, University of Birmingham, UK, 2010. [Google Scholar]
  40. M. Pàmies-Vilà, A. Mayer, E. Matusiak, V. Chatziioannou: Dataset to: A method for the reproduction of cello bow kinematics using a robotic arm and motion capture, Zenodo. https://doi.org/10.5281/zenodo.10696680. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.