Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 44
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2024034
Published online 30 September 2024
  1. J. Schelleng: The bowed string and the player, Journal of the Acoustical Society of America 53, 1 (1973) 26–41. [CrossRef] [Google Scholar]
  2. C. Raman: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family: with experimental verification of the results, Indian Association for the Cultivation of Science 15 (1918) 1–158. [Google Scholar]
  3. R. Schumacher: Measurements of some parameters of bowing, Journal of the Acoustical Society of America 96, 4 (1994) 1985–1998. [CrossRef] [Google Scholar]
  4. E. Schoonderwaldt, K. Guettler, A. Askenfelt: An empirical investigation of bow-force limits in the Schelleng diagram, Acta Acustica united with Acustica 94, 4 (2008) 604–622. [CrossRef] [Google Scholar]
  5. P. Galluzzo: On the playability of stringed instruments, PhD thesis, University of Cambridge, 2004. [Google Scholar]
  6. R. Mores: Maximum bow force revisited, Journal of the Acoustical Society of America 140, 2 (2016) 1162–1171. [CrossRef] [PubMed] [Google Scholar]
  7. R. Mores: Complementary empirical data on minimum bow force, Journal of the Acoustical Society of America 142, 2 (2017) 728–736. [CrossRef] [PubMed] [Google Scholar]
  8. T. Wofford: Study of the interaction between the musician and the instrument. Application to the playability of the cello, PhD thesis, Sorbonne Université, 2018. [Google Scholar]
  9. J. Woodhouse: On the playability of violins. Part II: minimum bow force and transients, Acta Acustica united with Acustica 78, 3 (1993) 137–153. [Google Scholar]
  10. H. Mansour, J. Woodhouse, G.P. Scavone: On minimum bow force for bowed strings, Acta Acustica united with Acustica 103, 2 (2017) 317–330. [CrossRef] [Google Scholar]
  11. K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acustica united with Acustica 88, 6 (2002) 970–985. [Google Scholar]
  12. K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, Journal of the Acoustical Society of America 101, 5 (1997) 2903–2913. [CrossRef] [Google Scholar]
  13. R. Schumacher, J. Woodhouse: The transient behaviour of models of bowed-string motion, Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 3 (1995) 509–523. [CrossRef] [PubMed] [Google Scholar]
  14. R. Schumacher, J. Woodhouse: Computer modelling of violin playing, Contemporary Physics 36, 2 (1995) 79–92. [CrossRef] [Google Scholar]
  15. M. Demoucron: On the control of virtual violins physical modelling and control of bowed string instruments, PhD thesis, Royal Institute of Technology, Stockholm, 2008. [Google Scholar]
  16. P. Galluzzo, J. Woodhouse, H. Mansour: Assessing friction laws for simulating bowed-string motion, Acta Acustica united with Acustica 103, 6 (2017) 1080–1099. [CrossRef] [Google Scholar]
  17. A. Lampis, A. Mayer, M. Pàmies-Vilà, V. Chatziioannou: Examination of the static and dynamic forces at the termination of a bowed string, Journal of the Acoustical Society of America 153, 3 supplement (2023) A198. [CrossRef] [Google Scholar]
  18. A. Mayer, A. Lampis: A versatile monochord setup: An industrial robotic arm as bowing and plucking device, Technical report, Department of Music Acoustics – Wiener Klangstil (IWK), 2024. Available at https: //doi.org/10.21939/iwk-tech-report-1-2024. [Google Scholar]
  19. P. Galluzzo, J. Woodhouse: High-performance bowing machine tests of bowed-string transients, Acta Acustica united with Acustica 100, 1 (2014) 139–153. [CrossRef] [Google Scholar]
  20. A. Cronhjort: A computer-controlled bowing machine, Speech Transmission Laboratory Quarterly Progress and Status Report (STL-QPSR), Department of Speech Communication and Music Acoustics, Royal Institute of Technology, Stockholm, 1992, pp. 2–3. [Google Scholar]
  21. A. Mayer, M. Pàmies-Vilà, V. Chatziioannou: The universal robots real-time data exchange (RTDE) and LabView, Technical report, Department of Music Acoustics – Wiener Klangstil (IWK), 2022. [Google Scholar]
  22. J. Woodhouse: Plucked guitar transients: comparison of measurements and synthesis, Acta Acustica united with Acustica 90, 5 (2004) 945–965. [Google Scholar]
  23. N.J. Lynch-Aird, J. Woodhouse: Mechanical properties of nylon harp strings, Materials 10 (2017) 497. [CrossRef] [PubMed] [Google Scholar]
  24. C. Valette: The mechanics of vibrating strings, in: A. Hirschberg, J. Kergomard, G. Weinreich (Eds.), Mechanics of musical instruments, Springer-Verlag, Vienna and New York, 1995, pp. 115–183. [Google Scholar]
  25. J. Woodhouse: Bowed string simulation using a thermal friction model, Acta Acustica united with Acustica 89, 2 (2003) 355–368. [Google Scholar]
  26. J. Smith, J. Woodhouse: The tribology of rosin, Journal of the Mechanics and Physics of Solids 48, 8 (2000) 1633–1681. [CrossRef] [Google Scholar]
  27. M. McIntyre, R. Schumacher, J. Woodhouse: Aperiodicity in bowed-string motion, Acta Acustica united with Acustica 49, 1 (1981) 13–32. [Google Scholar]
  28. A. Lampis: Data for experimental assessment of bowed-string transient playability limits [data set], Zenodo2024. https://doi.org/10.5281/zenodo.10946413. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.