Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 65
Number of page(s) 12
DOI https://doi.org/10.1051/aacus/2024042
Published online 20 November 2024
  1. M. Campbell, J. Gilbert, A. Myers: The science of brass instruments, Springer International Publishing, New York City, USA, 2021. [CrossRef] [Google Scholar]
  2. J.S. Cullen, J. Gilbert, D.M. Campbell: Brass instruments: linear stability analysis and experiments with an artificial mouth, Acta Acustica 86 (2000) 704–724. [Google Scholar]
  3. L. Velut, C. Vergez, J. Gilbert, M. Djahanbani: How well can linear stability analysis predict the behaviour of an outward-striking valve brass instrument model? Acta Acustica united with Acustica 103 (2017) 132–148. [CrossRef] [Google Scholar]
  4. T. Kaburagi, C. Kuroki, S. Hidaka, S. Ishikawa: Numerical method for analyzing steady-state oscillation in trumpets, Acoustical Science and Technology 44, 3 (2023) 269–280. [CrossRef] [Google Scholar]
  5. V. Fréour, L. Guillot, H. Masuda, S. Usa, E. Tominaga, Y. Tohgi, C. Vergez, B. Cochelin: Numerical continuation of a physical model of brass instruments: application to trumpet comparisons, Journal of the Acoustical Society of America 148, 2 (2020) 748–758. [CrossRef] [PubMed] [Google Scholar]
  6. V. Fréour, H. Masuda, B. Cochelin, C. Vergez. Identification of lip parameters associated to different trumpets using constrained continuation. in Proceedings of Forum Acusticum 2023, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  7. J.F. Petiot, M. Roatta, V. Fréour, K. Arimoto, Contribution of machine learning and physic-based sound simulations for the charcterization of brass instruments, in: Proceedings of Forum Acusticum 2023, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  8. B. Cochelin: A path following technique via an asymptotic-numerical method, Computers and Structures 53, 5 (1994) 1181–1192. [CrossRef] [Google Scholar]
  9. B. Cochelin, C. Vergez: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration 324 (2009) 242–262. [Google Scholar]
  10. J. Gilbert, S. Maugeais, C. Vergez: Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation, Acta Acustica 4 (2020) 27. [CrossRef] [EDP Sciences] [Google Scholar]
  11. R. Matteoli, J. Gilbert, C. Vergez, J.-P. Dalmont, S. Maugeais, S. Terrien, F. Ablitzer: Minimal blowing pressure allowing periodic oscillations in a model of bass brass instruments, Acta Acustica 5 (2021) 57. [CrossRef] [EDP Sciences] [Google Scholar]
  12. R. Matteoli, J. Gilbert, S. Terrien, J.-P. Dalmont, C. Vergez: Diversity of ghost notes in tubas, euphoniums and saxhorns, Acta Acustica 6 (2021) 32. [Google Scholar]
  13. V. Fréour, M. Mohamed, K. Arimoto, V. Emiya, B. Cochelin, C. Vergez: Machine learning applied to the prediction of trumpet bifurcation diagrams: towards a tool for trumpet designers, in: Proceedings of Forum Acusticum 2023, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  14. R. Tournemenne, J.F. Petiot, B. Talgorn, M. Kokkolaras, J. Gilbert: Brass instruments design using physics-based sound simulation models and surrogate-assisted derivative-free optimization, Journal of Mechanical Design 139 (2017) 0141401-1–011401-9. [CrossRef] [Google Scholar]
  15. S. Gonzales, D. Salvi, D. Baeza, F. Antonacci, A. Sarti: A data-driven approach to violin making, Scientific Reports 11 (2021) 9455. [CrossRef] [PubMed] [Google Scholar]
  16. F. Mokdad, S. Missoum: A fully parametrized finite element model of a grand piano soundboard for sensitivity analysis of the dynamic behavior, in: Proceedingsof the ASME 2013, Portland, Oregon, USA, August 4–7, 2013. [Google Scholar]
  17. S. Adachi, M.A. Sato: Trumpet sound simulation using a two-dimensional lip vibration model, Journal of the Acoustical Society of America 99, 2 (1996) 1200–1209. [CrossRef] [Google Scholar]
  18. V. Fréour, L. Guillot, H. Masuda, C. Vergez, B. Cochelin: Parameter identification of a physical model of brass instruments by constrained continuation, Acta Acustica 6 (2022) 9. [CrossRef] [EDP Sciences] [Google Scholar]
  19. T. Chen, C. Guestrin: Xgboost: a scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August, Association for Computing Machinery, 2016, pp. 785–794. [Google Scholar]
  20. D. Berrar: Cross-validation, Encyclopedia of Bioinformatics and Computational Biology 1 (2019) 542–545. [CrossRef] [Google Scholar]
  21. H. Hotelling: Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24, 6 (1933) 417. [CrossRef] [Google Scholar]
  22. R. Roy, T. Kailath: Esprit: estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 7 (1989) 984–995. [CrossRef] [Google Scholar]
  23. R. Tibshirani: Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996) 267–288. [CrossRef] [Google Scholar]
  24. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani: Least angle regression, Annals of Statistics 32, 2 (2004) 407–451. [CrossRef] [Google Scholar]
  25. A.E. Hoerl, R.W. Kennard: Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12, 1 (1970) 55–67. [CrossRef] [Google Scholar]
  26. V. Vapnik: The nature of statistical learning theory Chapter 5–6, Springer Science & Business Media, Berlin, Germany, 2013. [Google Scholar]
  27. N.S. Altman: An introduction to kernel and nearest-neighbor nonparametric regression, American Statistician 46, 3 (1992) 175–185. [CrossRef] [Google Scholar]
  28. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas: Scikit-learn: machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830. [Google Scholar]
  29. M. Mohamed: A machine learning tool for the prediction of trumpet bifurcation diagrams – Supplementary materials, GitHub, 2024. Available at https://github.com/mimoun-mohamed-lab/Prediction-of-trumpet-descriptors. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.