Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
|
|
---|---|---|
Article Number | 64 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/aacus/2024063 | |
Published online | 20 November 2024 |
- A. Askenfelt, E.V. Jansson: From touch to string vibrations. I: Timing in the grand piano action, Journal of the Acoustical Society of America 88, 1 (1990) 52–63. [CrossRef] [Google Scholar]
- F. Paul, B. Bokiau, S. Timmermans: The grand piano action functioning demystified thanks to the multibody approach, in: Uhl T. (ed.), Advances in mechanism and machine science, vol. 73, Springer International Publishing, Cham, 2019, pp. 3147–3156. [CrossRef] [Google Scholar]
- A. Izadbakhsh, J. McPhee, S. Birkett: Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank, Journal of Computational and Nonlinear Dynamics 3, 3 (2008) 031004. [CrossRef] [Google Scholar]
- B. Bokiau, A-.E. Ceulemans, P. Fisette: Historical and dynamical study of piano actions: a multibody modelling approach, Journal of Cultural Heritage Special Issue 27, (2017) S120–S130. [CrossRef] [Google Scholar]
- A. Thorin, X. Boutillon, J. Lozada: Modelling the dynamics of the piano action: is apparent success real? Acta Acustica united with Acustica 100, 6 (2014) 1162–1171. [CrossRef] [Google Scholar]
- R. Oboe: A multi-instrument, force-feedback keyboard, Computer Music Journal 30, 3 (2006) 38–52. [CrossRef] [Google Scholar]
- R.B. Gillespie, B. Yu, R. Grijalva, S. Awtar: Characterizing the feel of the piano action, Computer Music Journal 35, 1 (2011) 43–57. [CrossRef] [Google Scholar]
- M.C. Hirschkorn: Dynamic model of a piano action mechanism, Master Thesis, University of Waterloo, Waterloo, Ontario, Canada, 2004. [Google Scholar]
- A. Thorin, X. Boutillon, J. Lozada, X. Merlhiot: Non-smooth dynamics for an efficient simulation of the grand piano action, Meccanica 52, 11–12 (2017) 2837–2854. [CrossRef] [Google Scholar]
- J. Lozada: Modélisation, contrôle haptique et nouvelles réalisations de claviers musicaux, PhD Thesis, Ecole Polytechnique X2007, [Google Scholar]
- S. Timmermans, A-.E. Ceulemans, P. Fisette: Upright and grand piano actions dynamic performances assessments using a multibody approach, Mechanism and Machine Theory, 160 (2021) 104296. [CrossRef] [Google Scholar]
- O. Ortmann: The physical basis of piano touch and tone: an experimental investigation of the effect of the player’s touch upon the tone of the piano, K. Paul, Trench, Trubner & Company Limited, J. Curwen & Sons Limited\E. P. Dutton & Company, London\New York, NY, 1925. [Google Scholar]
- A. Askenfelt, E.V. Jansson: From touch to string vibrations. II: The motion of the key and hammer, Journal of the Acoustical Society of America 90, 5 (1991) 2383–2393. [CrossRef] [Google Scholar]
- H. Kinoshita, S. Furuya, T. Aoki, E. Altenmüller: Loudness control in pianists as exemplified in keystroke force measurements on different touches, Journal of the Acoustical Society of America 121, 5 (2007) 2959–2969. [CrossRef] [PubMed] [Google Scholar]
- W. Goebl, R. Bresin, I. Fujinaga: Perception of touch quality in piano tones, Journal of the Acoustical Society of America 136, 5 (2014) 2839–2850. [CrossRef] [PubMed] [Google Scholar]
- J. Chabassier, M. Duruflé: Energy based simulation of a Timoshenko beam in non-forced rotation. Influence of the piano hammer shank flexibility on the sound, Journal of Sound and Vibration 333, 26 (2014) 7198–7215. [CrossRef] [Google Scholar]
- L. Adam: Méthode de piano du conservatoire. Adoptée pour servir à l’enseignement dans cet établissement, 1804 À l’imprimerie du Conservatoire de Musique, an XIII, Paris. [Google Scholar]
- F. Kalkbrenner: Méthode pour apprendre le piano-forte à l’aide du guide-mains Contenant Les Principes de Musique, un Système complet de Doigter, La Classification des Auteurs à étudier, des Règles sur l’expression, sur la manière de phraser, sur la Ponctuation Musicale &c., suivie de Douze Études, dédiée aux Conservatoires de Musique d’Europe, opus 108, Pleyel, Paris, 1831. [Google Scholar]
- R.M. Breithaupt: Die natürliche Klaviertechnik, 1912 3rd edn, C. F. Kahnt Nachfolger, Leipzig. [Google Scholar]
- A. Somma, J. Roudet, B. Fabre: A multidisciplinary study of pianoforte touch and tone qualities, in: Proceedings of the 10th Convention of the European Acoustics Association, Forum Acusticum 2023, European Acoustics Association, Turin, Italy, 2023, pp. 2765–2772. [Google Scholar]
- A. Somma: Acoustique de la pratique sur instruments historiques. Étude transdisciplinaire de l’interprétation historiquement informée au piano, Thèse de doctorat, Sorbonne Université, Paris, 2024. Available at https://theses.hal.science/THESES-SU/tel-04619711v1. [Google Scholar]
- F. Verdugo, J. Pelletier, B. Michaud, C. Traube, M. Begon: Effects of trunk motion, touch, and articulation on upper-limb velocities and on joint contribution to endpoint velocities during the production of loud piano tones, Frontiers in Psychology 11 (2020) 1159. [CrossRef] [PubMed] [Google Scholar]
- S. O’Modhrain, R.B. Gillespie: Once more, with feeling: revisiting the role of touch in performer-instrument interaction, in: S. Papetti, C. Saitis (eds), Musical haptics, Springer series on touch and haptic systems, Springer International Publishing, Cham, 2018, pp. 11–27. [CrossRef] [Google Scholar]
- W. Goebl, R. Bresin, A. Galembo: Touch and temporal behavior of grand piano actions, Journal of the Acoustical Society of America 118, 2 (2005) 1154–1165. [CrossRef] [PubMed] [Google Scholar]
- A.P. McPherson, Y.E. Kim: Multidimensional gesture sensing at the piano keyboard, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ‘11: CHI Conference on Human Factors in Computing Systems, Vancouver BC Canada, May 7–12, New York, NY, USA, ACM, 2007, pp. 2789–2798. [Google Scholar]
- R.E.M. Harding: The piano-forte: its history traced to the great exhibition of 1851, 2nd edn, Heckscher & Co, London, 1978. [Google Scholar]
- S. Furuya, E. Altenmüller, H. Katayose, H. Kinoshita: Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists, BMC Neuroscience 11 (2010) 1–15. [CrossRef] [Google Scholar]
- S. Furuya, R. Osu, H. Kinoshita: Effective utilization of gravity during arm downswing in keystrokes by expert pianists, Neuroscience 164, 2 (2009) 822–831. [CrossRef] [PubMed] [Google Scholar]
- S. Plagenhoef, F.G. Evans, T. Abdelnour: Anatomical data for analyzing human motion, Research quarterly for exercise and sport 54, 2 (1983) 169–178. [Google Scholar]
- H.A. Conklin: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, Journal of the Acoustical Society of America 99, 6 (1996) 3286–3296. [CrossRef] [Google Scholar]
- B.R. Glasberg, B.C. Moore: A model of loudness applicable to time-varying sounds, Journal of the Audio Engineering Society 50, 5 (2002) 331–342. [Google Scholar]
- Genesis Acoustics: Matlab loudness toolbox. Available at https://genesis-acoustics.com/ (visited on 08/10/2024). [Google Scholar]
- B.H. Repp: Acoustics, perception, and production of legato articulation on a computer-controlled grand piano, Journal of the Acoustical Society of America 102, 3 (1997) 1878–1890. [CrossRef] [PubMed] [Google Scholar]
- W. Goebl: The role of timing and intensity in the production and perception of melody in expressive piano performance, PhD Thesis, Institut für Musikwissenschaft, Wien, 2003. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.