Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 63
Number of page(s) 30
DOI https://doi.org/10.1051/aacus/2024050
Published online 20 November 2024
  1. L. Millot, C. Baumann: A proposal for a minimal model of free reeds, Acta Acustica united with Acustica 93, 1 (2007) 122–144. [Google Scholar]
  2. M. Campbell, J. Gilbert, A. Myers: The science of brass instruments, Springer, Switzerland, 2021. [CrossRef] [Google Scholar]
  3. J.-P. Dalmont, B. Gazengel, J. Gilbert, J. Kergomard: Some aspects of tuning and clean intonation in reed instruments, Applied Acoustics 46, 1 (1995) 19–60. [CrossRef] [Google Scholar]
  4. C. Linnaeus: Systema naturae, vol. 1, Laurentii Salvii, Stockholm, 1758. [Google Scholar]
  5. H.-C. Spatz, H. Beismann, F. Brüchert, A. Emanns, T. Speck: Biomechanics of the giant reed Arundo donax, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 352, 1349 (1997) 1–10. [CrossRef] [Google Scholar]
  6. R.E. Perdue: Arundo donax – Source of musical reeds and industrial cellulose, Economic Botany 12, 4 (1958) 368–404. [CrossRef] [Google Scholar]
  7. A. Baines, A. Boult: Woodwind instruments and their history, Dover Publications, Mineola, NY, 1991. [Google Scholar]
  8. V. Bucur: Handbook of materials for wind musical instruments, Springer, Switzerland, 2019. [CrossRef] [Google Scholar]
  9. N.E. Groom: An analysis of commercial single reed micrometers in the us and the development of a new manual single reed micrometer, PhD thesis, University of Maryland, 2020. [Google Scholar]
  10. M.S.W. Veselack: Comparison of cell and tissue differences in good and unusable clarinet reeds, PhD thesis, Ball State University, 1979. [Google Scholar]
  11. L.J. Intravaia, R.S. Resnick: A research study of a technique for adjusting clarinet reeds, Journal of Research in Music Education 16, 1 (1968) 45–58. [CrossRef] [Google Scholar]
  12. F. Berr: Traité complet de la clarinette à quatorze clefs: manuel indispensable aux personnes qui professent cet instrument et à celles qui l’étudient, E. Duverger, Paris, 1836. [Google Scholar]
  13. D.J. Casadonte: The clarinet reed: an introduction to its biology, chemistry, and physics, PhD thesis, The Ohio State University, 1995. [Google Scholar]
  14. A. Muñoz Arancón: New techniques for the characterisation of single reeds in playing conditions, PhD thesis, Le Mans Université, 2017. [Google Scholar]
  15. J.-F. Petiot, P. Kersaudy, G.P. Scavone, S. McAdams, B. Gazengel: Investigation of the relationships between perceived qualities and sound parameters of saxophone reeds, Acta Acustica united with Acustica 103, 5 (2017) 812–829. [CrossRef] [Google Scholar]
  16. G. Legere: Oriented polymer reeds for musical instruments, July 11 2000. US Patent 6,087,571. [Google Scholar]
  17. N.H. Fletcher, T. Rossing: The physics of musical instruments. 2nd edn., Springer, New York, NY, 2012. [Google Scholar]
  18. A. Chaigne, J. Kergomard: Acoustics of musical instruments, Springer, New York, NY, 2016. [CrossRef] [Google Scholar]
  19. A. Chaigne, J. Kergomard: Acoustique des instruments de musique, Belin, Paris, 2008. [Google Scholar]
  20. S.C. Thompson: The effect of the reed resonance on woodwind tone production, Journal of the Acoustical Society of America 66, 5 (1979) 1299–1307. [CrossRef] [Google Scholar]
  21. W. Li, A. Almeida, J. Smith, J. Wolfe: How clarinettists articulate: the effect of blowing pressure and tonguing on initial and final transients, Journal of the Acoustical Society of America 139, 2 (2016) 825–838. [CrossRef] [PubMed] [Google Scholar]
  22. M. Pàmies-Vilà, A. Hofmann, V. Chatziioannou: The influence of the vocal tract on the attack transients in clarinet playing, Journal of New Music Research 49, 2 (2020) 126–135. [CrossRef] [PubMed] [Google Scholar]
  23. T. Colinot, C. Vergez, P. Guillemain, J.-B. Doc: Multistability of saxophone oscillation regimes and its influence on sound production, Acta Acustica 5 (2021) 33. [CrossRef] [EDP Sciences] [Google Scholar]
  24. V. Chatziioannou, M. Van Walstijn: Estimation of clarinet reed parameters by inverse modelling, Acta Acustica united with Acustica 98, 4 (2012) 629–639. [CrossRef] [Google Scholar]
  25. S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments, Acta Acustica united with Acustica 101, 1 (2015) 155–173. [CrossRef] [Google Scholar]
  26. J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements, Journal of the Acoustical Society of America 114, 4 (2003) 2253–2262. [CrossRef] [PubMed] [Google Scholar]
  27. P.-A. Taillard, F. Laloë, M. Gross, J.-P. Dalmont, J. Kergomard: Statistical estimation of mechanical parameters of clarinet reeds using experimental and numerical approaches, Acta Acustica united with Acustica 100, 3 (2014) 555–573. [CrossRef] [Google Scholar]
  28. M. van Walstijn, F. Avanzini: Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part II: a lumped model approximation, Acta Acustica united with Acustica 93, 3 (2007) 435–446. [Google Scholar]
  29. S. Karkar, C. Vergez, B. Cochelin: Oscillation threshold of a clarinet model: a numerical continuation approach, Journal of the Acoustical Society of America 131, 1 (2012) 698–707. [CrossRef] [PubMed] [Google Scholar]
  30. A. Hirschberg, R.W.A. Van de Laar, J.P. Marrou-Maurieres, A.P.J. Wijnands, H.J. Dane, S.G. Kruijswijk, A.J.M. Houtsma: A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments, Acta Acustica united with Acustica 70, 2 (1990) 146–154. [Google Scholar]
  31. J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet, Journal of the Acoustical Society of America 118, 5 (2005) 3294–3305. [CrossRef] [PubMed] [Google Scholar]
  32. B. Gazengel, J.-P. Dalmont, E. Hendrickx, M. Paquier, V. Koehl: Recherche d’indicateurs de qualité d’anches simples – partie 1: estimation des paramètres équivalents en régimes statique et quasi-statique, in: Proceedings of CFA2022, 16ème Congrès Français d’Acoustique, Marseille, France, 11–15 April, 2022. [Google Scholar]
  33. J.-P. Dalmont, P. Guillemain, P.-A. Taillard: Influence of the reed flow on the intonation of the clarinet, in: Proceedings of Acoustics 2012 joint congress (11ème Congrès Français d’Acoustique – 2012 Annual IOA Meeting), Nantes, France, 23–27 April, 2012. [Google Scholar]
  34. W.L. Coyle, P. Guillemain, J. Kergomard, J.-P. Dalmont: Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas, Journal of the Acoustical Society of America 138, 5 (2015) 2770–2781. [CrossRef] [PubMed] [Google Scholar]
  35. V. Chatziioannou, M. van Walstijn: Reed vibration modelling for woodwind instruments using a two-dimensional finite difference method approach, in: Proceedings of the International Symposium on Musical Acoustics (ISMA-07), Barcelona, Spain, 9–12 September, 2007. [Google Scholar]
  36. E. Ducasse: A physical model of a single-reed wind instrument, including actions of the player, Computer Music Journal 27, 1 (2003) 59–70. [CrossRef] [Google Scholar]
  37. E. Ducasse: Modélisation et simulation dans le domaine temporel d’instruments à vent à anche simple en situation de jeu: méthodes et modèles, PhD thesis, Université du Maine, 2001. [Google Scholar]
  38. V. Chatziioannou, A. Hofmann: Physics-based analysis of articulatory player actions in single-reed woodwind instruments, Acta Acustica united with Acustica 101, 2 (2015) 292–299. [CrossRef] [Google Scholar]
  39. K.H. Hunt, F.R. Erskine Crossley: Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied Mechanics 42, 2 (1975) 440–445. [CrossRef] [Google Scholar]
  40. S. Karkar, C. Vergez, B. Cochelin: Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions, in: Proceedings of Acoustics 2012 joint congress (11ème Congrès Français d’Acoustique – 2012 Annual IOA Meeting), Nantes, France, 23–27 April, 2012. [Google Scholar]
  41. T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model, Acta Acustica united with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
  42. A. Muñoz Arancón, B. Gazengel, J.-P. Dalmont, E. Conan: Estimation of saxophone reed parameters during playing, Journal of the Acoustical Society of America 139, 5 (2016) 2754–2765. [CrossRef] [PubMed] [Google Scholar]
  43. V. Chatziioannou, S. Schmutzhard, M. Pàmies-Vilà, A. Hofmann: Investigating clarinet articulation using a physical model and an artificial blowing machine, Acta Acustica united with Acustica 105, 4 (2019) 682–694. [CrossRef] [Google Scholar]
  44. S.E. Stewart, W.J. Strong: Functional model of a simplified clarinet, Journal of the Acoustical Society of America 68, 1 (1980) 109–120. [CrossRef] [Google Scholar]
  45. S.D. Sommerfeldt, W.J. Strong: Simulation of a player-clarinet system, Journal of the Acoustical Society of America 83, 5 (1988) 1908–1918. [CrossRef] [Google Scholar]
  46. A. Ricardo da Silva, G.P. Scavone, M. van Walstijn: Numerical simulations of fluid-structure interactions in single-reed mouthpieces, Journal of the Acoustical Society of America 122, 3 (2007) 1798–1809. [CrossRef] [PubMed] [Google Scholar]
  47. F. Avanzini, M. van Walstijn: Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part I: A one-dimensional distributed model, Acta Acustica united with Acustica 90, 3 (2004) 537–547. [Google Scholar]
  48. V. Chatziioannou: Forward and inverse modelling of single-reed woodwind instruments with applications to digital sound synthesis, PhD thesis, Queen’s University Belfast, 2010. [Google Scholar]
  49. M.L. Facchinetti, X. Boutillon, A. Constantinescu: Numerical and experimental modal analysis of the reed and pipe of a clarinet, Journal of the Acoustical Society of America 113, 5 (2003) 2874–2883. [CrossRef] [PubMed] [Google Scholar]
  50. F. Pinard, B. Laine, H. Vach: Musical quality assessment of clarinet reeds using optical holography, Journal of the Acoustical Society of America 113, 3 (2003) 1736–1742. [CrossRef] [PubMed] [Google Scholar]
  51. T. Guimezanes: Etude expérimentale et numérique de l’anche de clarinette, PhD thesis, Université du Maine, 2008. [Google Scholar]
  52. D. Roylance: Lecture notes in engineering viscoelasticity, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA, 2001. [Google Scholar]
  53. A.M.C. Valkering: Characterization of a clarinet mouthpiece. Technical Report R-1219-S, Vakgroep Transportfysica – Eindhoven University of Technology, 1993. [Google Scholar]
  54. T. Yoshinaga, H. Yokoyama, T. Shoji, A. Miki, A. Iida: Global numerical simulation of fluid-structure-acoustic interaction in a single-reed instrument, Journal of the Acoustical Society of America 149, 3 (2021) 1623–1632. [CrossRef] [PubMed] [Google Scholar]
  55. P.-A. Taillard: Theoretical and experimental study of the role of the reed in clarinet playing, PhD thesis, Le Mans Université, 2018. [Google Scholar]
  56. C.J. Nederveen: Influence of reed motion on the resonance frequency of reed-blown wood-wind instruments, Journal of the Acoustical Society of America 45, 2 (1969) 513–514. [CrossRef] [Google Scholar]
  57. C.J. Nederveen: Acoustical aspects of woodwind instruments, PhD thesis, Northern Illinois University, 1998. [Google Scholar]
  58. E. Ducasse: Modélisation d’instruments de musique pour la synthèse sonore: application aux instruments à vent, Le Journal de Physique Colloques 51, C2 (1990) C2–837. [Google Scholar]
  59. J.-P. Dalmont, C. Frappé: Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments, Journal of the Acoustical Society of America 122, 2 (2007) 1173–1179. [CrossRef] [PubMed] [Google Scholar]
  60. C. Fritz, S. Farner, J. Kergomard: Some aspects of the harmonic balance method applied to the clarinet, Applied acoustics 65, 12 (2004) 1155–1180. [CrossRef] [Google Scholar]
  61. E.A. Petersen, P. Guillemain, M. Jousserand: The dual influence of the reed resonance frequency and tonehole lattice cutoff frequency on sound production and radiation of a clarinet-like instrument, Journal of the Acoustical Society of America 151, 6 (2022) 3780–3791. [CrossRef] [PubMed] [Google Scholar]
  62. F. Fontana, S. Papetti, H. Järveläinen, F. Avanzini, B.L. Giordano: Perception of vibrotactile cues in musical performance, in: S. Papetti, C. Saitis (Eds.), Musical haptics, Springer, Switzerland, 2018, pp. 49–72. [CrossRef] [Google Scholar]
  63. A. Gaillard, V. Koehl, B. Gazengel: Link between stiffness symmetry and perceived quality of clarinet cane reeds, in: Proceedings of Forum Acusticum 2023, the 10th Convention of the European Acoustics Association, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  64. C. Fritz, D. Dubois: Perceptual evaluation of musical instruments: state of the art and methodology, Acta Acustica united with Acustica 101, 2 (2015) 369–381. [CrossRef] [Google Scholar]
  65. E. Obataya, M. Norimoto: Acoustic properties of a reed (Arundo donax L.) used for the vibrating plate of a clarinet, Journal of the Acoustical Society of America 106, 2 (1999) 1106–1110. [CrossRef] [Google Scholar]
  66. B. Gazengel, J.-P. Dalmont, J.-F. Petiot: Link between objective and subjective characterizations of Bb clarinet reeds, Applied Acoustics 106 (2016) 155–166. [CrossRef] [Google Scholar]
  67. C. Kemp, G.P. Scavone: Mechanical, anatomical and modeling techniques for alto saxophone reed evaluation and classification, Wood Science and Technology 54 (2020) 1677–1704. [CrossRef] [Google Scholar]
  68. S.C. Mukhopadhyay, G.S. Gupta, J.D. Woolley, S.N. Demidenko: Saxophone reed inspection employing planar electromagnetic sensors, IEEE Transactions on Instrumentation and Measurement 56, 6 (2007) 2492–2503. [CrossRef] [Google Scholar]
  69. P. Kolesik, A. Mills, M. Sedgley: Anatomical characteristics affecting the musical performance of clarinet reeds made from Arundo donax L. (Gramineae), Annals of Botany 81, 1 (1998) 151–155. [CrossRef] [Google Scholar]
  70. K. Stetson: Study of clarinet reeds using digital holography, Optical Engineering 53, 11 (2014) 112305–112305. [CrossRef] [Google Scholar]
  71. M. Gangl, A. Hofmann, A. Mayer: Comparison of characterization methods for B-flat clarinet reeds, in: Proceedings of the 7th AAAA Congress on Sound and Vibration, Ljubljana, Slovenia, 22–23 September, 2016. [Google Scholar]
  72. V. Koehl, E. Hendrickx, M. Paquier, B. Gazengel, J.-P. Dalmont: Recherche d’indicateurs de qualité d’anches simples – partie 2: approche subjective, in: Proceedings of CFA2022, 16ème Congrès Français d’Acoustique, Marseille, France, 11–15 April, 2022. [Google Scholar]
  73. S. McAdams, S. Winsberg, S. Donnadieu, G. De Soete, J. Krimphoff: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes, Psychological Research 58 (1995) 177–192. [CrossRef] [PubMed] [Google Scholar]
  74. R.A. Kendall, E.C. Carterette: Perceptual scaling of simultaneous wind instrument timbres, Music Perception 8, 4 (1991) 369–404. [CrossRef] [Google Scholar]
  75. A. Nykänen, Ö. Johansson, J. Lundberg, J. Berg: Modelling perceptual dimensions of saxophone sounds, Acta Acustica united with Acustica 95, 3 (2009) 539–549. [CrossRef] [Google Scholar]
  76. M. Barthet, P. Guillemain, R. Kronland-Martinet, S. Ystad: From clarinet control to timbre perception, Acta Acustica united with Acustica 96, 4 (2010) 678–689. [CrossRef] [Google Scholar]
  77. R. Viala: Personal communication, 2023, ITEMM (Intitut Technologique Européen des Métiers de la Musique). [Google Scholar]
  78. V. Bucur: Traditional and new materials for the reeds of woodwind musical instruments, Wood Science and Technology 53, 5 (2019) 1157–1187. [CrossRef] [Google Scholar]
  79. M. Kawasaki, T. Nobuchi, Y. Nakafushi, M. Nose, M. Shibata, P. Li, M. Shiojiri: Structural observations and biomechanical measurements of clarinet reeds made from Arundo donax, Microscopy Research and Technique 80, 8 (2017) 959–968. [CrossRef] [PubMed] [Google Scholar]
  80. E. Ukshini, J.J.J. Dirckx: Longitudinal and transversal elasticity of natural and artificial materials for musical instrument reeds, Materials 13, 20 (2020) 4566. [CrossRef] [PubMed] [Google Scholar]
  81. K. Hanai: The measurement of the balance of the rigidity at the tip of a single reed – a reed with good acoustic quality has symmetrical rigidity between both sides and between the top and bottom surfaces, Pipers 351 (2010) 23–26 (in Japanese). [Google Scholar]
  82. A. Calazans, A. Maurel-Pantel, F. Silva, G. Machado, C. Vergez, P. Sanchez, M. Rosenzweig, P. Eveno, M. Carron: Analyse microtomographique et vibroacoustique d’anches synthétiques pour saxophone, in: Proceedings of CFA2022, 16ème Congrès Français d’Acoustique, Marseille, France, 11–15 April, 2022. [Google Scholar]
  83. P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, J.-P. Dalmont: Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital fresnel holography, Strain 46, 1 (2010) 89–100. [CrossRef] [Google Scholar]
  84. C.S. McGinnis, C. Gallagher: The mode of vibration of a clarinet reed, The Journal of the Acoustical Society of America 12, 4 (1941) 529–531. [CrossRef] [Google Scholar]
  85. E. Ukshini, J.J.J. Dirckx: Three-dimensional vibration patterns of alto saxophone reeds measured on different mouthpieces under mimicked realistic playing conditions, The Journal of the Acoustical Society of America 150, 5 (2021) 3730–3746. [CrossRef] [PubMed] [Google Scholar]
  86. T. Idogawa, T. Kobata, K. Komuro, M. Iwaki: Nonlinear vibrations in the air column of a clarinet artificially blown, The Journal of the Acoustical Society of America 93, 1 (1993) 540–551. [CrossRef] [Google Scholar]
  87. T. Kobata, T. Idogawa: Pressure in the mouthpiece, reed opening, and air-flow speed at the reed opening of a clarinet artificially blown, Journal of the Acoustical Society of Japan 14, 6 (1993) 417–428. [Google Scholar]
  88. J. Backus: Vibrations of the reed and the air column in the clarinet, Journal of the Acoustical Society of America 33, 6 (1961) 806–809. [CrossRef] [Google Scholar]
  89. L. Fuks, J. Sundberg: Blowing pressures in bassoon, clarinet, oboe and saxophone, Acta Acustica united with Acustica 85, 2 (1999) 267–277. [Google Scholar]
  90. M. Pàmies-Vilà, A. Hofmann, V. Chatziioannou: Analysis of tonguing and blowing actions during clarinet performance, Frontiers in Psychology 9 (2018) 617. [CrossRef] [PubMed] [Google Scholar]
  91. P. Guillemain, C. Vergez, D. Ferrand, A. Farcy: An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays, Acta Acustica united with Acustica 96, 4 (2010) 622–634. [CrossRef] [Google Scholar]
  92. X. Boutillon, V. Gibiat: Evaluation of the acoustical stiffness of saxophone reeds under playing conditions by using the reactive power approach, Journal of the Acoustical Society of America 100, 2 (1996) 1178–1189. [CrossRef] [Google Scholar]
  93. C. Kemp: Characterisation of woodwind instrument reed (Arundo donax L) degradation and mechanical behaviour, PhD thesis, McGill University, 2019. [Google Scholar]
  94. P. Smigielski: Holographie optique – Interférométrie holographique, Techniques de l’Ingénieur, 2001. [Google Scholar]
  95. A. Muñoz Arancón, B. Gazengel, J.-P. Dalmont: Comparison of human and artificial playing of a single reed instrument, Acta Acustica united with Acustica 104, 6 (2018) 1104–1117. [CrossRef] [Google Scholar]
  96. C. Fritz, J. Wolfe: How do clarinet players adjust the resonances of their vocal tracts for different playing effects?, Journal of the Acoustical Society of America 118, 5 (2005) 3306–3315. [CrossRef] [PubMed] [Google Scholar]
  97. G.P. Scavone, A. Lefebvre, A. Ricardo da Silva: Measurement of vocal-tract influence during saxophone performance, Journal of the Acoustical Society of America 123, 4 (2008) 2391–2400. [CrossRef] [PubMed] [Google Scholar]
  98. J.M. Chen, J. Smith, J. Wolfe: Experienced saxophonists learn to tune their vocal tracts, Science 319, 5864 (2008) 776–776. [CrossRef] [PubMed] [Google Scholar]
  99. J.M. Chen, J. Smith, J. Wolfe: Pitch bending and glissandi on the clarinet: Roles of the vocal tract and partial tone hole closure, Journal of the Acoustical Society of America 126, 3 (2009) 1511–1520. [CrossRef] [PubMed] [Google Scholar]
  100. J.M. Chen, J. Smith, J. Wolfe: Saxophonists tune vocal tract resonances in advanced performance techniques, Journal of the Acoustical Society of America 129, 1 (2011) 415–426. [CrossRef] [PubMed] [Google Scholar]
  101. S.M. Lulich, S. Charles, B. Lulich: The relation between tongue shape and pitch in clarinet playing using ultrasound measurements, Journal of the Acoustical Society of America 141, 3 (2017) 1759–1768. [CrossRef] [PubMed] [Google Scholar]
  102. W. Li, A. Almeida, J. Smith, J. Wolfe: Tongue, lip and breath interactions in clarinet playing: a study using a playing machine, in: Proceedings of the 21st International Congress on Sound and Vibration, ICSV21, Beijing, China, 13–17 July, 2014. [Google Scholar]
  103. E. Pillinger: The effects of design on the tone and response of clarinet mouthpieces, PhD thesis, London Guildhall University, 2000. [Google Scholar]
  104. J. Gilbert: Etude des instruments de musique à anche simple: extension de la méthode d’équilibrage harmonique, rôle de l’inharmonicité des résonances, mesure des grandeurs d’entrée, PhD thesis, Université du Maine, 1991. [Google Scholar]
  105. A. Almeida, D. George, J. Smith, J. Wolfe: The clarinet: How blowing pressure, lip force, lip position and reed “hardness” affect pitch, sound level, and spectrum, Journal of the Acoustical Society of America 134, 3 (2013) 2247–2255. [CrossRef] [PubMed] [Google Scholar]
  106. Reeds technical elements. Available at https://vandoren.fr/en/reeds-technical-elements/ (accessed 02-20-2024). [Google Scholar]
  107. W.E. Worman: Self-sustained nonlinear oscillations of medium amplitude in clarinet-like systems, PhD thesis, Case Western Reserve University, 1971. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.