Issue
Acta Acust.
Volume 9, 2025
Topical Issue - Vibroacoustics
Article Number 12
Number of page(s) 18
DOI https://doi.org/10.1051/aacus/2024088
Published online 17 February 2025
  1. G.D.N. Almeida, E.F. Vergara, L.R. Barbosa, R. Brum: Low-frequency sound absorption of a metamaterial with symmetrical-coiled-up spaces. Applied Acoustics 172 (2021) 107593. [CrossRef] [Google Scholar]
  2. Y. Wang, H. Zhao, H. Yang, J. Zhong, D. Zhao, Z. Lu, J. Wen: A tunable sound-absorbing metamaterial based on coiled-up space. Journal of Applied Physics 123, 18 (2018) 185109. [CrossRef] [Google Scholar]
  3. T.G. Zieliński, K.C. Opiela, N. Dauchez, T. Boutin, M.-A. Galland, K. Attenborough: Extremely tortuous sound absorbers with labyrinthine channels in non-porous and microporous solid skeletons. Applied Acoustics 217 (2024) 109816. [CrossRef] [Google Scholar]
  4. J. Guo, Y. Fang, Z. Jiang, X. Zhang: An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks. Journal of the Acoustical Society of America 149, 1 (2021)70–81. [CrossRef] [PubMed] [Google Scholar]
  5. M. Duan, C. Yu, Z. Xu, F. Xin, T.J. Lu: Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks. Applied Physics Letters 117, 15 (2020) 151904. [CrossRef] [Google Scholar]
  6. T. Cavalieri, A. Cebrecos, J.-P. Groby, C. Chaufour, V. Romero-García: Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: application to train noise reduction. Applied Acoustics 146 (2019) 1–8. [CrossRef] [Google Scholar]
  7. R. Al Jahdali, Y. Wu: Coupled resonators for sound trapping and absorption. Scientific Reports 8, 1 (2018) 13855. [CrossRef] [PubMed] [Google Scholar]
  8. T.S. Oh, W. Jeon: Acoustic metaliners for sound insulation in a duct with little flow resistance. Applied Physics Letters 120, 4 (2022) 044103. [CrossRef] [Google Scholar]
  9. J. Boulvert, G. Gabard, V. Romero-García, J.-P. Groby: Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems. Scientific Reports 12 (2022) 10013. [CrossRef] [PubMed] [Google Scholar]
  10. J. Boulvert, T. Humbert, V. Romero-García, G. Gabard, E.R. Fotsing, A. Ross, J. Mardjono, J.-P. Groby: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: realization for duct acoustics with 3D printed porous resonators. Journal of Sound and Vibration 523 (2022) 116687. [CrossRef] [Google Scholar]
  11. Y. Meng, V. Romero-García, G. Gabard, J.-P. Groby, C. Bricault, S. Goudé: Subwavelength broadband perfect absorption for unidimensional open-duct problems. Advanced Materials Technologies 8 (2023) 2201909. [CrossRef] [Google Scholar]
  12. F. Nistri, V.H. Kamrul, L. Bettini, E. Musso, D. Piciucco, M. Zemello, A.S. Gliozzi, A.O. Krushynska, N. Pugno, L. Sangiuliano, L. Shtrepi, F. Bosia: Efficient broadband sound absorption exploiting rainbow labyrinthine metamaterials. Journal of Physics D: Applied Physics 57, 24 (2024) 245111. [CrossRef] [Google Scholar]
  13. T.G. Zieliński, K.C. Opiela, P. Pawłowski, N. Dauchez, T. Boutin, J. Kennedy, D. Trimble, H. Rice, B. Van Damme, G. Hannema, R. Wróbel, S. Kim, S. Ghaffari Mosanenzadeh, N.X. Fang, J. Yang, B. Briere de La Hosseraye, M.C.J. Hornikx, E. Salze, M.-A. Galland, R. Boonen, A. Carvalho de Sousa, E. Deckers, M. Gaborit, J.-P. Groby: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study. Additive Manufacturing 36 (2020)101564. [CrossRef] [Google Scholar]
  14. G. Fusaro, L. Barbaresi, M. Cingolani, M. Garai, E. Ida, A. Prato, A. Schiavi: Investigation of the impact of additive manufacturing techniques on the acoustic performance of a coiled-up resonator. Journal of the Acoustical Society of America 153, 5 (2023) 2921–2931. [CrossRef] [PubMed] [Google Scholar]
  15. A. Ciochon, J. Kennedy, R. Leiba, L. Flanagan, M. Culleton: The impact of surface roughness on an additively manufactured acoustic material: an experimental and numerical investigation. Journal of Sound and Vibration 546 (2023) 117434. [CrossRef] [Google Scholar]
  16. A. Jamois, D. Dragna, M.-A. Galland: Impact of manufacturing uncertainties on the acoustic properties of 3D printed materials, in: 29th International Congress on Sound and Vibration ICSV29, Prague, Czech Republic. International Institute of Acoustics and Vibration IIAV, 2023. [Google Scholar]
  17. A. Jamois, D. Dragna, T.G. Zieliński, M.-A. Galland: Modélisation acoustique d’un matériau obtenu par fabrication additive placé en paroi d’un conduit, in: 16ème Congrès Français d’Acoustique, CFA2022, Marseille, France, Apr 2022. [Google Scholar]
  18. D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
  19. Y. Champoux, Étude expérimentale du comportement acoustique des materiaux poreux à structure rigide. Ph.D. thesis, Carleton University, Canada, 1991. [Google Scholar]
  20. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies. Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
  21. S.R. Pride, F.D. Morgan, A.F. Gangi: Drag forces of porous-medium acoustics. Physical Review B 47, 9 (1993) 4964–4978. [CrossRef] [PubMed] [Google Scholar]
  22. J.-L. Auriault, C. Boutin, C. Geindreau: Homogenization of Coupled Phenomena in Heterogenous Media. John Wiley & Sons, 2010. [Google Scholar]
  23. C. Perrot, F. Chevillotte, R. Panneton: Dynamic viscous permeability of an open-cell aluminum foam: computations versus experiments. Journal of Applied Physics 103, 2 (2008) 024909. [CrossRef] [Google Scholar]
  24. H. T. Luu, C. Perrot, R. Panneton: Influence of porosity, fiber radius and fiber orientation on the transport and acoustic properties of random fiber structures. Acta Acustica United with Acustica 103, 6 (2017) 1050–1063. [CrossRef] [Google Scholar]
  25. T.G. Zieliński, R. Venegas, C. Perrot, M. ervenka, F. Chevillotte, K. Attenborough: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. Journal of Sound and Vibration 483 (2020) 115441. [CrossRef] [Google Scholar]
  26. L. Jaouen, F. Chevilotte: Length correction of 2D discontinuities or perforations at large wavelengths and for linear acoustics. Acta Acustica United with Acustica 104 (2018) 243–250. [CrossRef] [Google Scholar]
  27. V.V. Voronina, K.V. Horoshenkov: Acoustic properties of unconsolidated granular mixes. Applied Acoustics 65, 7 (2004) 673–691. [CrossRef] [Google Scholar]
  28. V. Viet Dung, R. Panneton, R. Gagné: Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: multiscale approach. Journal of the Acoustical Society of America 145, 6 (2019) 3606–3624. [CrossRef] [PubMed] [Google Scholar]
  29. A. Cummings: Impedance tube measurements on porous media: the effects of air-gaps around the sample. Journal of Sound and Vibration 151, 1 (1991) 63–75. [CrossRef] [Google Scholar]
  30. N. Sellen, M. Cuesta, M.-A. Galland: Noise reduction in a flow duct: implementation of a hybrid passive/active solution. Journal of Sound and Vibration 297, 3–5 (2006) 492–511. [CrossRef] [Google Scholar]
  31. B. Betgen, M.-A. Galland: A new hybrid active/passive sound absorber with variable surface impedance. Mechanical Systems and Signal Processing 25, 5 (2011) 1715–1726. [CrossRef] [Google Scholar]
  32. M.L. Munjal: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design. John Wiley & Sons, 1987. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.