Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 32
Number of page(s) 12
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2025014
Published online 30 April 2025
  1. C.M. Hutchins: A history of violin research. Journal of the Acoustical Society of America 73 (1983) 1421–1432 [CrossRef] [Google Scholar]
  2. C.M. Hutchins: A measurable controlling factor in the tone and playing quality of violins. Journal of the Catgut Acoustical Society 1 (1989) 10–5 [Google Scholar]
  3. H. Dunnwald: An extended method of objectively determining the sound quality of violins. Acustica 71 (1990) 269–276 [Google Scholar]
  4. E.V. Jansson: Admittance measurements of 25 high quality violins. Acustica 83 (1997) 337–341 [Google Scholar]
  5. G. Bissinger: Structural acoustics of good and bad violins. Journal of the Acoustical Society of America 124 (2008) 1764–1773 [CrossRef] [PubMed] [Google Scholar]
  6. B.A. Yankovskii: Method for the objective appraisal of violin tone quality. Soviet Physics-Acoustics 11 (1965) 269 [Google Scholar]
  7. G. Bissinger, F. Gearhart: A standardized qualitative violin evaluation procedure? Journal of the Catgut Acoustical Society (Series II) 3 (1998) 44–45 [Google Scholar]
  8. C. Fritz, I. Cross, B.C.J. Moore, J. Woodhouse: Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin. Journal of the Acoustical Society of America 122 (2007) 3640–3650 [CrossRef] [PubMed] [Google Scholar]
  9. M. Rau, J.S. Abel, D. James, J.O. Smith III: Electric-to-acoustic pickup processing for string instruments: An experimental study of the guitar with a hexaphonic pickup. Journal of the Acoustical Society of America 150 (2021) 385–397 [CrossRef] [PubMed] [Google Scholar]
  10. C. Fritz, J. Woodhouse, F.P.-H. Cheng, I. Cross, A.F. Blackwell, B.C.J. Moore: Perceptual studies of violin body damping and vibrato. Journal of the Acoustical Society of America 127 (2010) 513–524 [CrossRef] [PubMed] [Google Scholar]
  11. P. Wrzeciono, K. Marasek: Violin Sound Quality: Expert Judgements and Objective Measurements, in: Z.W. Ras, A.A. Wieczorkowska (eds), Advances in music information retrieval, Springer, Berlin, 2010, pp. 237–260 [Google Scholar]
  12. C. Saitis, C. Fritz, B. Giordano, G. Scavone: Bridge admittance measurements of 10 preference-rated violins, in: Proceedings of Acoustics 2012, Nantes, France, 23–27 April, 2012 [Google Scholar]
  13. L. Fu, C. Fritz, G. Scavone: Perception of violin soundpost tightness through playing and listening tests. Journal of the Acoustical Society of America 150 (2021) 540–550 [CrossRef] [PubMed] [Google Scholar]
  14. C. Fritz, V. Salvador-Castrillo, G. Stoppani: The Bilbao project: searching for relationships between sound and playing properties of violins with their construction parameters, in: Conference on Sound Perception, Poznan, Poland, September, 2021 [Google Scholar]
  15. C.S. Pannila, A.S. Pannila, D.C. Jayarathna, J.R.P. Jayakody: Evaluation of the sound quality of a classical violin by physically measurable acoustical properties. Proceedings of the Technical Sessions 32 (2016) 23–30 [Google Scholar]
  16. Y. Kakegawa, T. Asakura: Effect of physical characteristics of strings on the subjective impression of violin sound. Acoustical Science and Technology 44 (2023) 5 [Google Scholar]
  17. R. Inta, J. Smith, J. Wolfe: Measurement of the effect on violins of ageing and playing. Acoustics Australia 33 (2010) 1–15 [Google Scholar]
  18. C. Fritz, J. Curtin, J. Poitevineau, H. Borsarello, I. Wollman, F. Tao, T. Ghasarossian: Soloist evaluations of six Old Italian and six new violins. Proceedings of the National Academy of Sciences of the United States of America 111 (2014) 7224–7229 [CrossRef] [PubMed] [Google Scholar]
  19. C.A. Rozzi, A. Voltini, F. Antonacci, M. Nucci, M. Grass: A listening experiment comparing the timbre of two Stradivari with other violins. Journal of the Acoustical Society of America 151 (2022) 443–450 [CrossRef] [PubMed] [Google Scholar]
  20. C. Saitis, B.L. Giordano, C. Fritz, G.P. Scavone: Perceptual evaluation of violins: A quantitative analysis of preference judgments by experienced players. Journal of the Acoustical Society of America 132 (2012) 4002–4012 [CrossRef] [PubMed] [Google Scholar]
  21. C. Saitis, G. P. Scavone, C. Fritz, B.L. Giordano: Effect of task constraints on the perceptual evaluation of violins. Acta Acustica united with Acustica 101 (2015) 382–393 [Google Scholar]
  22. C. Saitis, C. Fritz, G.P. Scavone, C. Guastavino, D. Dubois: Perceptual evaluation of violins: A psycholinguistic analysis of preference verbal descriptions by experienced musicians. Journal of the Acoustical Society of America 141 (2017) 2746–2757 [CrossRef] [PubMed] [Google Scholar]
  23. J. S̆tĕpánek, Z. Otčenášek: Rustle as an attribute of timbre of stationary violin tone. Journal of the Catgut Acoustical Society (Series II) 3 (1999) 32–38 [Google Scholar]
  24. J. S̆tĕpánek. Musical Sound timbre: verbal descriptions and dimensions. Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18–20, 2006 [Google Scholar]
  25. E. Łukasik: Towards timbre-driven semantic retrieval of violins, in: 5th International Conference on Intelligent Systems Design and Applications (ISDA’05), Warsaw, Poland, 8–10 September, 2005 [Google Scholar]
  26. E. Łukasik: Matching violins in terms of timbral features. Archives of Acoustics 31 (2006) 227–233 [Google Scholar]
  27. C. Fritz, A.F. Blackwell, I. Cross, J. Woodhouse, B.C.J. Moore: Exploring violin sound quality: Investigating English timbre descriptors and correlating resynthesized acoustical modifications with perceptual properties. Journal of the Acoustical Society of America 131 (2012) 783–794 [CrossRef] [PubMed] [Google Scholar]
  28. F. Satragno, M. Zanoni, A. Sarti, F. Antonacci: Feature based characterization of violin timbre, in: Proceedings of the 25th European Signal Processing Conference (EUSIPCO), 28 August–2 September, IEEE, 2017 pp. 1853–1857 [Google Scholar]
  29. S. Giraldo, G. Waddell, I. Nou, A. Ortega, O. Mayor, A. Perez, A. Williamon, R. Ramirez: Automatic assessment of tone quality in violin music performance. Frontiers in Psychology 10 (2019) 334 [Google Scholar]
  30. R. Malvermi, S. Gonzalez, F. Antonacci, A. Sarti, R. Corradi: A statistical approach to violin evaluation. Applied Science 12 (2022) 7313 [Google Scholar]
  31. M. Pezzoli, A. Canclini, F. Antonacci, A. Sarti: A comparative analysis of the directional sound radiation of historical violins. Journal of the Acoustical Society of America 152 (2022) 354–367 [CrossRef] [PubMed] [Google Scholar]
  32. C. Fritz: On the difficulty to relate the timbral qualities of a bowed-string instrument with its acoustic properties and construction parameters, in: 2nd International Conference on Timbre (Timbre 2020), Thessaloniki, Greece, 2–4 September, 2020 [Google Scholar]
  33. C. Fritz, G. Stoppani, U. Igartua, R. Rico, A. Arroitajauregi, L. Artola: The Bilbao project: How violin makers match backs and tops to produce particular sorts of violins, in: Proceedings of the International Symposium on Musical Acoustics, Detmold, Germany, 13–17 September, 2019 [Google Scholar]
  34. L. Jost: Work in progress for a PhD. https://www.fh-zwickau.de/aks/musikinstrumentenbau/forschung/promotionsprojekte/#c26483 [Google Scholar]
  35. M. Schleske: Empirical tools in contemporary violin making: Part II: Psychoacoustic analysis and use of acoustical tools. Journal of the Catgut Acoustical Society 4 (2002) 43–61 [Google Scholar]
  36. J. Curtin: Measuring violin sound radiation using an impact hammer. Journal of Violin Society of America: VSA Papers 22 (2009) 186–209 [Google Scholar]
  37. J.J. Gibson: The ecological approach to visual perception. Houghton Mifflin, Boston, 1979 [Google Scholar]
  38. C. Fritz, J. Curtin, J. Poitevineau, F.-C. Tao: Listener evaluations of new and Old Italian violins. Proceedings of the National Academy of Sciences of the United States of America 114 (2017) 5395–5400 [CrossRef] [PubMed] [Google Scholar]
  39. S.M. Nastac, V.G. Gliga, M. Mihalcica, A.M. Nauncef, F. Dinulica, M. Campean: Correlation between acoustic analysis and psycho-acoustic evaluation of violins. Applied Sciences 12 (2022) 8620 [Google Scholar]
  40. C. Fritz, R. Viala, V. Salvador Castrillo: Violinist, violin, bow: what can we hear and recognize? in: Proceedings of the International Congress on Acoustics, Gyeongju, South Korea, 24–28 October, 2022 [Google Scholar]
  41. C. Fritz, G. Stoppani: Developing methodologies to correlate perceived sound qualities of violins with controlled construction parameters, in: Proceedings of Forum Acusticum, Torino, Italy, 11–15 September, 2023 [Google Scholar]
  42. E.B. Davis: On the effective material properties of violin plates, in: Proceedings of the Stockholm Music Acoustics Conference, Stockholm, Sweden, 30 July–3 August, 2013 [Google Scholar]
  43. M.E. McIntyre, J. Woodhouse: On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metallurgica 36 (1988) 1397–1416 [CrossRef] [Google Scholar]
  44. F.E. Toole, S.E. Olive: The modification of timbre by resonances: Perception and measurement. Journal of the Audio Engineering Society 36 (1988) 122–142 [Google Scholar]
  45. H. Tahvanainen, J. Pätynen, T. Lokki: Perception of bass with some musical instruments in concert halls, in: International Symposium on Musical Acoustics, Le Mans, France, 7–12 July, French Acoustical Society, 2014, pp. 563–568 [Google Scholar]
  46. M. Kob, S.V. Amengual Garí, Z. Schärer Kalkandjiev: Room effect on musicians’ performance, in: J. Blauert, J. Braasch (eds), The technology of binaural understanding, Springer, Cham, 2020, pp. 223–249 [CrossRef] [Google Scholar]
  47. D.J. Hermes: The perceptual structure of sound. Springer, 2023 [CrossRef] [Google Scholar]
  48. E. Parizet, D. Grappe, C. Benzecri, C. Coppel: Sound quality assessment: comparison of in-situ and on-line experiments. Proceedings of the Euronoise, Madeira, Portugal, 25–27 October, 2021 [Google Scholar]
  49. B. De Man, J.D. Reiss: APE, Audio perceptual evaluation toolbox for MATLAB, in: Proceedings of the AES 136th Convention, Berlin, Germany, 26–29 April, 2014 [Google Scholar]
  50. N. Jillings, B. De Man, D. Moffat, J.D. Reiss: Web audio evaluation tool: a browser-based listening test environment, in: 12th Sound and Music Computing Conference, Maynooth, Ireland, 25 July–1 August, 2015 [Google Scholar]
  51. N. Jillings, B. De Man, D. Moffat, J.D. Reiss, R. Stables: Web audio evaluation tool: a framework for subjective assessment of audio, in: 2nd Web Audio Conference, Atlanta, USA, 4–6 April, 2016 [Google Scholar]
  52. Recommendation ITU-R BS.1770-4: Algorithms to measure audio programme loudness and true-peak audio level. International Telecommunication Union, 2015 [Google Scholar]
  53. ANSI S3.4-2007: Procedure for the computation of loudness of steady sounds. American National Standards Institute, New York [Google Scholar]
  54. B.C.J. Moore, B.R. Glasberg, T. Baer: A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society 45 (1997) 224–240 [Google Scholar]
  55. C. Gough: Violin plate modes. Journal of the Acoustical Society of America 137 (2015) 139–153 [CrossRef] [PubMed] [Google Scholar]
  56. V. Salvador-Castrillo: Correlations between construction parameters, vibro-acoustic characteristics and perceptual qualities of a pool of 13 violins, Master dissertation, Sorbonne Université, 2021 [Google Scholar]
  57. B.C. Stoel, T.M. Borman: A comparison of wood density between classical Cremonese and modern violins. PLoS One 3 (2008) e2554 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.