Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 13
Number of page(s) 17
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2024089
Published online 14 February 2025
  1. M. Clark, P. Minter: Dependence of timbre on the tonal loudness produced by musical instruments. Journal of the Audio Engineering Society 12 (1964) 28–31. [Google Scholar]
  2. B.A. Bartlett: Tonal effects of close microphone placement. Journal of the Audio Engineering Society 29 (1981) 726–738. [Google Scholar]
  3. B. Bartlett: Tonal effects of classical music microphone placement. Audio Engineering Society Convention 74 (1983) 1994. [Google Scholar]
  4. S.D. Bellows, T.W. Leishman: Optimal microphone placement for single-channel sound-power spectrum estimation and reverberation effects. Journal of the Audio Engineering Society 71 (2023) 20–33. https://doi.org/10.17743/jaes.2022.0052. [CrossRef] [Google Scholar]
  5. F. Otondo, J.H. Rindel: The influence of the directivity of musical instruments in a room. Acta Acustica United with Acustica 90 (2004) 1178–1184. [Google Scholar]
  6. F. Otondo, J.H. Rindel: A new method for the radiation representation of musical instruments in auralizaitons. Acta Acustica United with Acustica 91 (2005) 902–906. [Google Scholar]
  7. J. Meyer: The sound of the orchestra. Journal of the Audio Engineering Society 41 (1993) 4. [Google Scholar]
  8. C.-H. Jeong, J.-G. Ih, C.-H. Yeon, C.-H. Haan: Prediction of the acoustic performance of a music hall considering the radiation characteristics of Korean traditional musical sources. Journal of the Korean Acoustical Society 23 (2004) 146–161. [Google Scholar]
  9. AES56-2008 (r2019): AES Standard on Acoustics: Sound Source Modeling: Loudspeaker Polar Radiation Measurements. Audio Engineering Society, New York, 2019. [Google Scholar]
  10. C.L.F. Group: CLF: A common loudspeaker format. Syn-Aud-Con Newsl. 32 (2004) 14–17. [Google Scholar]
  11. Ahnert Feistel Media Group: GLL: A New Standard For Measuring and Storing Loudspeaker Performance Data, 2007. https://www.afmg.eu/en/gll-loudspeaker-data-format-white-paper?. [Google Scholar]
  12. M. Kob: Impact of excitation and acoustic conditions on the accuracy of directivity measurements, in: Proceedings of ISMA, Le Mans, France, 2014, pp. 639–643. [Google Scholar]
  13. D.W. Martin: Directivity and the acoustic spectra of brass wind instruments. Journal of the Acoustical Society of America 13 (1942) 309–313. https://doi.org/10.1121/1.1916182. [CrossRef] [Google Scholar]
  14. J. Meyer, K. Wogram: Die Richtcharakteristiken des Hornes [The directional characteristics of the horn]. Das Musikinstrument 6 (1969) I–XII. [Google Scholar]
  15. A.C. Marruffo, A. Mayer, A. Hofmann, V. Chatziioannou, W. Kausel: Experimental investigation of high-resolution measurements of directivity patterns, in: Proceedings of DAGA, Vienna, 2021. [Google Scholar]
  16. A.C. Marruffo, J. Thilakan, A. Hofmann, V. Chatziioannou, M. Kob: High-resolution 3D directivity measurements of a trumpet, in: Proceedings of DAGA, Stuttgart, 2022. [Google Scholar]
  17. J. Meyer: Die Richtcharakteristiken von Klarinetten [The directional characteristics of clarinets]. Das Musikinstrument 14 (1965) 21–25. [Google Scholar]
  18. E. Maestre, G.P. Scavone, J.O. Smith: State-space modeling of sound source directivity: an experimental study of the violin and the clarinet. Journal of the Acoustical Society of America 149 (2021) 2768–2781. https://doi.org/10.1121/10.0004241. [CrossRef] [PubMed] [Google Scholar]
  19. S.D. Bellows, T.W. Leishman: Modeling musician diffraction and absorption for artificially excited clarinet directivity measurements. Proceedings of Meetings on Acoustics 46 (2022) 035002. https://doi.org/10.1121/2.0001586. [CrossRef] [Google Scholar]
  20. J. Meyer: Die Richtcharakteristiken von Oboen und Fagotten [The directional characteristics of the oboes and bassoons]. Das Musikinstrument 15 (1966) 958–964. [Google Scholar]
  21. T. Grothe, M. Kob: High resolution 3D radiation measurements on the bassoon, in: Proceedings of ISMA, Detmold, Germany, 2019, pp. 139–145. [Google Scholar]
  22. J. Meyer: Die Richtcharakteristiken von Geigen [The directional characteristics of violins]. Instrumentenbau-Zeitschrift 18 (1964) 275–281. [Google Scholar]
  23. G. Weinreich: Directional tone color. Journal of the Acoustical Society of America 101 (1997) 2338–2346. https://doi.org/10.1121/1.418213. [CrossRef] [Google Scholar]
  24. L.M. Wang, C.B. Burroughs: Directivity patterns of acoustic radiation from bowed violins. CASJ 3 (1999) 9–17. [Google Scholar]
  25. P.R. Cook, D. Trueman: Spherical radiation from stringed instruments: measured, modeled, and reproduced. CASJ 3 (1999) 8–14. [Google Scholar]
  26. L.M. Wang, C.B. Burroughs: Acoustic radiation from bowed violins. Journal of the Acoustical Society of America 110 (2001) 543–555. https://doi.org/10.1121/1.1378307. [CrossRef] [Google Scholar]
  27. H.J. Vos, O. Warusfel, N. Misdariis, D. de Vries: Analysis and reproduction of the frequency spectrum and directivity of a violin. Journal of the Acoustical Society of the Netherlands 167 (2003) 1–11. [Google Scholar]
  28. G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. Journal of the Acoustical Society of America 121 (2007) 3899–3906. https://doi.org/10.1121/1.2722238. [CrossRef] [PubMed] [Google Scholar]
  29. S. Berge: Models for Vibration and Radiation of Two Stringed Instruments. Norwegian University, 1996. [Google Scholar]
  30. J.-L. Le Carrou, Q. Leclere, F. Gautier: Some characteristics of the concert harp’s acoustic radiation. Journal of the Acoustical Society of America 127 (2010) 3203–3211. https://doi.org/10.1121/1.3377055. [CrossRef] [PubMed] [Google Scholar]
  31. J. Meyer: Die Richtcharakteristiken des Flügels [The directional characteristics of pianos]. Das Musikinstrument 14 (1965) 1085–1090. [Google Scholar]
  32. B. David: Vergleich der akustischen Richtwirkung des Konzertflügels Steinway D-274 mit und ohne “Klangspiegel”. Institute for Composition and Electroacoustics, University of Music and Performing Arts, Vienna, 2010. [Google Scholar]
  33. F. Zotter: Analysis and synthesis of sound-radiation with spherical arrays. Doctoral dissertation, Institute of Electronic Music and Acoustics University of Music and Performing Arts, Graz, 2009. [Google Scholar]
  34. M. Noistering, F. Zotter, R. Desmonet, W. Ritsch: Preserving sound source radiation-characteristics in network-based musical performances. Fortschritte der Akustik, DAGA, Düsseldorf, 2011. [Google Scholar]
  35. J. Pätynen, T. Lokki: Directivities of symphony orchestra instruments. Acta Acustica United with Acustica 2010 (2010) 138–167. https://doi.org/10.3813/AAA.918265. [CrossRef] [Google Scholar]
  36. G. Behler, M. Pollow, M. Vorländer: Measurements of musical instruments with surrounding spherical arrays, in: Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 2012, pp. 761–765. [Google Scholar]
  37. H. Ghasemi: Directivity measurement of santur instrument, in: Proceedings of the 19th International Congress on Sound and Vibration, Vilnius, Lithuania, 2012, pp. 3120–3124. [Google Scholar]
  38. N.R. Shabtai, G. Behler, M. Vorländer, S. Weinzierl: Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. Journal of the Acoustical Society of America 141 (2017) 1246–1256. https://doi.org/10.1121/1.4976071. [CrossRef] [PubMed] [Google Scholar]
  39. I. Ben Hagai, M. Pollow, M. Vorländer, B. Rafaely: Acoustic centering of sources measured by surrounding spherical microphone arrays. Journal of the Acoustical Society of America 130 (2011) 2003–2015. https://doi.org/10.1121/1.3624825. [CrossRef] [PubMed] [Google Scholar]
  40. I. Bork, H. Marshall, J. Meyer: Zur Abstrahlung des Anschlaggeräusches beim Flügel [On the radiation of “impact noises” from a grand piano]. Acustica 81 (1995) 300–308. [Google Scholar]
  41. J. Štěpánek, Z. Otčenášek: Sound directivity spectral spaces of violins, in: Proceedings of ISMA 2001, Perugia, 2001. [Google Scholar]
  42. A. Pérez Carrillo, J. Bonada, J. Pätynen, V. Välimäki: Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis. Journal of the Acoustical Society of America 130 (2011) 1020–1029. https://doi.org/10.1121/1.3605291. [CrossRef] [PubMed] [Google Scholar]
  43. T.W. Leishman, S.D. Bellows, C.M. Pincock, J.K. Whiting: High-resolution spherical directivity of live speech from a multiple-capture transfer function method. Journal of the Acoustical Society of America 149 (2021) 1507–1523. https://doi.org/10.1121/10.0003363. [CrossRef] [PubMed] [Google Scholar]
  44. S.D. Bellows, J.E. Avila, T.W. Leishman: Played trumpet directivity dataset. ScholarsArchive, 2023. https://scholarsarchive.byu.edu/directivity/18. [Google Scholar]
  45. K.J. Bodon: Development, evaluation, and validation of a high-resolution directivity measurement system for played musical instruments. Master’s thesis, Brigham Young University, 2016. [Google Scholar]
  46. S.D. Bellows, D.T. Harwood, K.L. Gee, M.R. Shepherd: Directional characteristics of two gamelan gongs. Journal of the Acoustical Society of America 154 (2023) 1921–1931. https://doi.org/10.1121/10.0021055. [CrossRef] [PubMed] [Google Scholar]
  47. T.W. Leishman, S. Rollins, H.M. Smith: An experimental evaluation of regular polyhedron loudspeakers as omnidirectional sources of sound. Journal of the Acoustical Society of America 120 (2006) 1411–1422. https://doi.org/10.1121/1.2221552. [CrossRef] [Google Scholar]
  48. M. Kob, H. Jers: Directivity measurement of a singer, in: Collected papers from the joint meeting Berlin 1999: 137th regular meeting of the Acoustical Society of America, 2nd Convention of the European Acoustics Association, Forum Acusticum 1999, integrating the 25th German Acoustics DAGA Conference, 1999. [Google Scholar]
  49. D.F. Comesaña, S.M. Cervera, T. Takeuchi, K. Holland: Measuring musical instruments directivity patterns with scanning techniques, in: Proceedings of the 19th International Congress on Sound and Vibration, Vilnius, Lithuania, 2012. [Google Scholar]
  50. P. Welch: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio Electroacoustics 15 (1967) 70–73. [CrossRef] [Google Scholar]
  51. J.S. Bendat, A.G. Piersol: Random Data: Analysis and Measurement Procedures. Wiley, Hoboken, NJ, 2010. [CrossRef] [Google Scholar]
  52. S.D. Bellows, T.W. Leishman: Acoustic source centering of musical instrument directivities using acoustical holography. Proceedings of Meetings on Acoustics 42 (2020) 055002. https://doi.org/10.1121/2.0001371. [CrossRef] [Google Scholar]
  53. S.D. Bellows, T.W. Leishman: A spherical-harmonic-based framework for spatial sampling considerations of musical instrument and voice directivity measurements, in: Proceedings of Forum Acusticum, Turin, Italy, 2023. [Google Scholar]
  54. E.G. Williams: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, London, 1999. https://doi.org/10.1016/B978-012753960-7/50001-2. [Google Scholar]
  55. T.M. Dunster, Ed.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York, 2010. [Google Scholar]
  56. L. Beranek, T. Mellow: Acoustics: Sound Fields, Transducers and Vibration. Academic Press, 2019. [Google Scholar]
  57. D. Deboy: Acoustic centering and rotational tracking in surrounding spherical microphone arrays. Master’s thesis, Institute of Electronic Music and Acoustics, University of Music and Performing Arts, 2010. [Google Scholar]
  58. N.R. Shabtai, M. Vorländer: Acoustic centering of sources with higher-order radiation patterns. Journal of the Acoustical Society of America 137 (2015) 1947–1961. https://doi.org/10.1121/1.4916594. [CrossRef] [PubMed] [Google Scholar]
  59. M.S. Ureda: Apparent apex theory, in: Audio Engineering Society Convention 61. Audio Engineering Society, 1978. [Google Scholar]
  60. S.D. Bellows, T.W. Leishman: On the low-frequency acoustic center. Journal of the Acoustical Society of America 153 (2023) 3404–3418. https://doi.org/10.1121/10.0019750. [CrossRef] [PubMed] [Google Scholar]
  61. S.D. Bellows: Acoustic directivity: advances in acoustic center localization, measurement optimization, directional modeling, and sound power spectral estimation. Doctoral dissertation, Brigham Young University, 2023. [Google Scholar]
  62. S.D. Bellows, T.W. Leishman: A spherical beamforming algorithm for acoustic centering and phase correction of source directivities, in: Proceedings of the 24th International Congress on Acoustics, Gyeongju, South Korea, 2022. [Google Scholar]
  63. L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques. Journal of the Acoustical Society of America 138 (2015) 708–730. https://doi.org/10.1121/1.4926438. [Google Scholar]
  64. S. Feistel, W. Ahnert: The significance of phase data for the acoustic prediction of combinations of sound sources, in: Audio Engineering Society Convention 119. Audio Engineering Society, 2005. [Google Scholar]
  65. J. Escolano, J.J. López, B. Pueo: Directive sources in acoustic discrete-time domain simulations based on directivity diagrams. Journal of the Acoustical Society of America 121 (2007) EL256–EL262. https://doi.org/10.1121/1.2739113. [CrossRef] [PubMed] [Google Scholar]
  66. S. Bilbao, J. Ahrens, B. Hamilton: Incorporating source directivity in wave-based virtual acoustics: time-domain models and fitting to measured data. Journal of the Acoustical Society of America 146 (2019) 2692–2703. https://doi.org/10.1121/1.5130194. [CrossRef] [PubMed] [Google Scholar]
  67. B. Rafaely: Fundamentals of Spherical Array Processing. Springer-Verlag, Berlin Heidelberg, 2015. [CrossRef] [Google Scholar]
  68. S.D. Bellows, T.W. Leishman: Application of Chebyshev quadrature rules to equiangular spherical and hemispherical directivity measurements. Journal of the Audio Engineering Society 72 (2024) 44–58. [CrossRef] [Google Scholar]
  69. J.R. Driscoll, D.M. Healy: Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 15 (1994) 202–250. [CrossRef] [Google Scholar]
  70. G. Weinreich: Sound hole sum rule and the dipole moment of the violin. Journal of the Acoustical Society of America 77 (1985) 710–718. https://doi.org/10.1121/1.392339. [CrossRef] [Google Scholar]
  71. R. Kennedy, P. Sadeghi: Hilbert Space Methods in Signal Processing. Cambridge University Press, Cambridge, 2013. [CrossRef] [Google Scholar]
  72. S. Bellows, T.W. Leishman: Effect of head orientation on speech directivity. Proceedings of Interspeech 2022 (2022) 246–250. https://doi.org/10.21437/Interspeech.2022-553. [CrossRef] [Google Scholar]
  73. S.D. Bellows, T.W. Leishman: High-resolution analysis of the directivity factor and directivity index functions of human speech, in: Audio Engineering Society Convention 146. Audio Engineering Society, 2019. [Google Scholar]
  74. S. Weinzierl, M. Vorländer, G. Behler, F. Brinkmann, H.V. Coler, E. Detzner, J. Krämer, A. Lindau, M. Pollow, F. Schulz, N.R. Shabtai: A database of anechoic microphone array measurements of musical instruments, 2017. https://doi.org/10.14279/depositonce-5861.2. [Google Scholar]
  75. M.A. Gerzon: Maximum directivity factor of nth order transducers. Journal of the Acoustical Society of America 60 (1976) 278–280. https://doi.org/10.1121/1.381043. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.