Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 21
Number of page(s) 15
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2025005
Published online 11 March 2025
  1. J.C. Makous, J.C. Middlebrooks: Two-dimensional sound localization by human listeners. The Journal of the Acoustical Society of America 87, 5 (1990) 2188–2200. [CrossRef] [PubMed] [Google Scholar]
  2. R.A. Butler, R.A. Humanski: Localization of sound in the vertical plane with and without high-frequency spectral cues. Perception & Psychophysics 51, 2 (1992) 182–186. [CrossRef] [PubMed] [Google Scholar]
  3. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. The Journal of the Acoustical Society of America 94, 1 (1993) 111–123. [Google Scholar]
  4. A.W. Bronkhorst: Localization of real and virtual sound sources. The Journal of the Acoustical Society of America 98, 5 (1995) 2542–2553. [Google Scholar]
  5. P. Majdak, M.J. Goupell, B. Laback: 3-d localization of virtual sound sources: effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. [CrossRef] [PubMed] [Google Scholar]
  6. H. Bahu, T. Carpentier, M. Noisternig, O. Warusfel: Comparison of different egocentric pointing methods for 3d sound localization experiments. Acta Acustica United with Acustica 102, 1 (2016) 107–118. [CrossRef] [Google Scholar]
  7. ITU-R: Methods for the subjective assessment of small impairments in audio systems, 2015, ITU-R BS.1116-3. [Google Scholar]
  8. M. Zaunschirm, M. Frank, F. Zotter: Binaural rendering with measured room responses: first-order ambisonic microphone vs. dummy head. Applied Sciences 10, 5 (2020) 1631. [CrossRef] [Google Scholar]
  9. I. Engel, C. Henry, S.V. Amengual Garí, P.W. Robinson, L. Picinali: Perceptual implications of different ambisonics-based methods for binaural reverberation. The Journal of the Acoustical Society of America 149, 2 (2021) 895–910. [CrossRef] [PubMed] [Google Scholar]
  10. G.R. VandenBos: APA Dictionary of Psychology. American Psychological Association, 2007. [Online]. Available: https://dictionary.apa.org/. [Google Scholar]
  11. J. Blauert: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, 1997. [Google Scholar]
  12. J. Blauert: The Technology of Binaural Listening. Springer, 2013. [CrossRef] [Google Scholar]
  13. F.L. Wightman, D.J. Kistler: Headphone simulation of free-field listening. II: psychophysical validation. The Journal of the Acoustical Society of America 85, 2 (1989) 868–878. [CrossRef] [PubMed] [Google Scholar]
  14. Z. Ben-Hur, D. Alon, P.W. Robinson, R. Mehra: Localization of virtual sounds in dynamic listening using sparse HRTFs, in: Proceedings of the AES International Conference on Audio for Virtual and Augmented Reality, Online, August 2020. [Google Scholar]
  15. C. Valzolgher, M. Alzhaler, E. Gessa, M. Todeschini, P. Nieto, G. Verdelet, R. Salemme, V. Gaveau, M. Marx, E. Truy, P. Barone: The impact of a visual spatial frame on real sound-source localization in virtual reality. Current Research in Behavioral Sciences 1 (2020) 100003. [CrossRef] [Google Scholar]
  16. A. Ahrens, K.D. Lund, M. Marschall, T. Dau: Sound source localization with varying amount of visual information in virtual reality. PLoS One 14, 3 (2019) 1–19. [Google Scholar]
  17. T. Huisman, A. Ahrens, E. MacDonald: Ambisonics sound source localization with varying amount of visual information in virtual reality. Frontiers in Virtual Reality 2 (2021) 722321. [CrossRef] [Google Scholar]
  18. A. Ahrens, K.D. Lund: Auditory spatial analysis in reverberant multi-talker environments with congruent and incongruent audio-visual room information. The Journal of the Acoustical Society of America 152, 3 (2022) 1586–1594. [CrossRef] [PubMed] [Google Scholar]
  19. G.H. Recanzone: Interactions of auditory and visual stimuli in space and time. Hearing Research 258, 1, 2 (2009) 89–99. [CrossRef] [PubMed] [Google Scholar]
  20. K.P. Körding, U. Beierholm, W.J. Ma, S. Quartz, J.B. Tenenbaum, L. Shams: Causal inference in multisensory perception. PLoS One 2, 9 (2007) e943. [CrossRef] [PubMed] [Google Scholar]
  21. D. Leakey: Some measurements on the effects of interchannel intensity and time differences in two channel sound systems. The Journal of the Acoustical Society of America 31, 7 (1959) 977–986. [CrossRef] [Google Scholar]
  22. V. Pulkki: Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 45, 6 (1997) 456–466. [Google Scholar]
  23. F. Zotter, M. Frank: Ambisonics. SpringerOpen, 2019. [Online]. Available: https://doi.org/10.1007/978-3-030-17207-7. [CrossRef] [Google Scholar]
  24. A. Hofmann, N. Meyer-Kahlen, S.J. Schlecht, T. Lokki: Audiovisual congruence and localization performance in virtual reality: 3d loudspeaker model vs. human avatar. Journal of Audio Engineering Society 72 (2024) 679–690. [CrossRef] [Google Scholar]
  25. P. Lladó, T. Mckenzie, N. Meyer-Kahlen, S. Schlecht: Predicting perceptual transparency of head-worn devices. Journal of Audio Engineering Society 70, 7/8 (2022) 585–600. [CrossRef] [Google Scholar]
  26. A. Mülleder, F. Zotter: Ultralight circumaural open headphones, in: Proceedings of the 154th AES Convention, Helsinki, Finland, May 2023. [Online]. Available: https://www.aes.org/e-lib/browse.cfm?elib=22075. [Google Scholar]
  27. A. Neidhardt, A.M. Zerlik: The availability of a hidden real reference affects the plausibility of position-dynamic auditory AR. Frontiers in Virtual Reality 2 (2021) 678875. [CrossRef] [Google Scholar]
  28. S.A. Wirler, N. Meyer-Kahlen, S.J. Schlecht: Towards transfer-plausibility for evaluating mixed reality audio in complex scenes, in: Proceedings of the AES International Conference on Audio for Virtual and Augmented Reality, 2020. [Google Scholar]
  29. M. Frank, L. Mohr, A. Sontacchi, F. Zotter: Flexible and intuitive pointing method for 3-d auditory localization experiments, in: Proceedings of the AES 38th International Conference on Sound Quality Evaluation, Piteå, Sweden, June 2010. [Google Scholar]
  30. M. Frank: Localization using different amplitude-panning methods in the frontal horizontal plane, in: Proceedings of the EAA Joint Symposium on Auralization and Ambisonics, Berlin, Germany, April 2014. [Online]. Available: https://doi.org/10.14279/depositonce-8. [Google Scholar]
  31. J.-M. Pernaux, M. Emerit, R. Nicol: Perceptual evaluation of binaural sound synthesis: the problem of reporting localization judgments, in: Proceedings of the 114th AES Convention, Amsterdam, The Netherlands, March 2003. [Google Scholar]
  32. ITU: Recommendation ITU-R BS.2051-3. ITU, Technical Report, May 2022. [Online]. Available: https://www.itu.int/rec/R-REC-BS.2051. [Google Scholar]
  33. S. Riedel, M. Frank, F. Zotter: The effect of temporal and directional density on listener envelopment. Journal of Audio Engineering Society 71, 7/8 (2023)455–467. [CrossRef] [Google Scholar]
  34. J.C. Middlebrooks: Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. The Journal of the Acoustical Society of America 106, 3 (1999) 1493–1510. [CrossRef] [PubMed] [Google Scholar]
  35. H. Møller, M.F. Sørensen, D. Hammershøi, C.B. Jensen: Head-related transfer functions of human subjects. Journal of Audio Engineering Society 43, 5 (1995)300–321. [Google Scholar]
  36. J. Oberem, B. Masiero, J. Fels: Experiments on authenticity and plausibility of binaural reproduction via headphones employing different recording methods. Applied Acoustics 114 (2016) 71–78. [CrossRef] [Google Scholar]
  37. C. Armstrong, L. Thresh, D. Murphy, G. Kearney: A perceptual evaluation of individual and non-individual HRTFs: a case study of the sadie II database. Applied Sciences 8, 11 (2018) 2029. [CrossRef] [Google Scholar]
  38. O.S. Rummukainen, T. Robotham, E.A. Habets: Head-related transfer functions for dynamic listeners in virtual reality. Applied Sciences 11, 14 (2021) 6646. [CrossRef] [Google Scholar]
  39. B. Bernschütz: A spherical far field HRIR/HRTF compilation of the neumann ku 100, in: Proceedings of the 39th DAGA, 2013, pp. 592–595. [Google Scholar]
  40. H.S. Braren, J. Fels: A High-Resolution Head-Related Transfer Function Data Set and 3D-Scan of KEMAR, 2020. [Google Scholar]
  41. A. Lindau, S. Weinzierl: On the spatial resolution of virtual acoustic environments for head movements in horizontal, vertical, and lateral direction, in: Proceedings of the EAA Symposium on Auralization, Espoo, Finland, June 2009. [Google Scholar]
  42. J.M. Arend, C. Pörschmann, S. Weinzierl, F. Brinkmann: Magnitude-corrected and time-aligned interpolation of head-related transfer functions, in: IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023. [Google Scholar]
  43. S. Riedel: HRIR convolver VST plug-in, 2023. [Online]. Available: https://git.iem.at/audioplugins/IEMPluginSuite/-/tree/HRIRConvolver. [Google Scholar]
  44. S. Yairi, Y. Iwaya, Y. Suzuki: Estimation of detection threshold of system latency of virtual auditory display. Applied Acoustics 68, 8 (2007) 851–863. [CrossRef] [Google Scholar]
  45. M. Brandner, M. Frank, D. Rudrich: Dirpat–database and viewer of 2d/3d directivity patterns of sound sources and receivers, in: Audio Engineering Society Convention 144. Audio Engineering Society, 2018. [Online]. Available: https://www.aes.org/e-lib/online/browse.cfm?elib=19538. [Google Scholar]
  46. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of ambisonic signals via magnitude least squares. Proceedings of DAGA 44 (2018) 339–342. [Google Scholar]
  47. N. Meyer-Kahlen, S.J. Schlecht, T. Lokki: Clearly audible room acoustical differences may not reveal where you are in a room. The Journal of the Acoustical Society of America 152, 2 (2022) 877–887. [CrossRef] [PubMed] [Google Scholar]
  48. D. Poirier-Quinot, M.S. Lawless, P. Stitt, B.F. Katz: HRTF performance evaluation: methodology and metrics for localisation accuracy and learning assessment, in: Advances in Fundamental and Applied Research on Spatial Audio, B.F. Katz, P. Majdak, Eds. IntechOpen, Rijeka 2022, ch. 3. [Online]. Available: https://doi.org/10.5772/intechopen.104931. [Google Scholar]
  49. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America 136, 2 (2014) 791–802. [CrossRef] [PubMed] [Google Scholar]
  50. P.M. Hofman, J.G. Van Riswick, A.J. Van Opstal, Relearning sound localization with new ears. Nature Neuroscience, 1, 5 (1998) 417–421. [CrossRef] [PubMed] [Google Scholar]
  51. N. Cliff, Ordinal Methods for Behavioral Data Analysis. Psychology Press, 2014. [CrossRef] [Google Scholar]
  52. K. Meissel, E.S. Yao: Using Cliff’s delta as a non-parametric effect size measure: an accessible web app and R tutorial. Practical Assessment, Research, and Evaluation 29, 1 (2024). [Online]. Available: https://doi.org/10.7275/pare.1977. [Google Scholar]
  53. M. Frank, S. Riedel: Simulation study on the effect of (non-) individual HRTFs and Ambisonics on median plane localization, in: Proceedings of the DAGA, Vol. 50. [Online]. Available: https://pub.dega-akustik.de/DAGA_2024/files/upload/paper/203.pdf. [Google Scholar]
  54. A. Mülleder, M. Romanov, N. Meyer-Kahlen, F. Zotter: Do-it-yourself headphones and development platform for augmented-reality audio, in: AES 2023 International Conference on Spatial and Immersive Audio. Audio Engineering Society, 2023. [Google Scholar]
  55. J. Jiang, B. Xie, H. Mai, L. Liu, K. Yi, C. Zhang: The role of dynamic cue in auditory vertical localisation. Applied Acoustics 146 (2019) 398–408. [CrossRef] [Google Scholar]
  56. B. Xie, L. Liu, J. Jiang, C. Zhang, T. Zhao: Auditory vertical localization in the median plane with conflicting dynamic interaural time difference and other elevation cues. The Journal of the Acoustical Society of America 154, 3 (2023) 1770–1786. [CrossRef] [PubMed] [Google Scholar]
  57. S. Fargeot, A. Vidal, M. Aramaki, R. Kronland-Martinet: Perceptual evaluation of an ambisonic auralization system of measured 3d acoustics. Acta Acustica 7 (2023) 56. [CrossRef] [EDP Sciences] [Google Scholar]
  58. S. Riedel: Supplementary data and code, 2023. [Online]. Available: https://github.com/stefanriedel/Localization_RealVirtual_AuditoryVisual. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.