Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 20
Number of page(s) 11
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2024078
Published online 07 March 2025
  1. M. Van Walstijn, K. Kowalczyk: On the numerical solution of the 2D wave equation with compact FDTD schemes, in: Proceedings of the 11th International Conference on Digital Audio Effects, DAFx, 2008, pp. 205–212. [Google Scholar]
  2. K. Kowalczyk, M. Van Walstijn: Room acoustics simulation using 3D compact explicit FDTD schemes, IEEE Transactions on Audio, Speech, and Language Processing 19, 1 (2011) 34–46. [CrossRef] [Google Scholar]
  3. C.J. Webb, S. Bilbao: Computing room acoustics with CUDA – 3D FDTD schemes with boundary losses and viscosity, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 317–320. [Google Scholar]
  4. D. Botteldooren: Finite difference time domain simulation of low frequency room acoustic problems, The Journal of the Acoustical Society of America 98, 6 (1995) 3302–3308. [CrossRef] [Google Scholar]
  5. L. Savioja: Real-time 3D finite-difference time-domain simulation of low and mid-frequency room acoustics, in: DAFX: the 13th International Conference on Digital Audio Effects (DAFx-10), 2010, Graz, Austria. [Google Scholar]
  6. M. Raissi, P. Perdikaris, G.E. Karniadakis: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019) 686–707. [CrossRef] [Google Scholar]
  7. Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.M. Stuart, A. Anandkumar: Fourier neural operator for parametric partial differential equations, in: CoRR abs/2010.08895, 2020. [Google Scholar]
  8. J.D. Parker, S.J. Schlecht, R. Rabenstein, M. Schäfer: Physical modeling using recurrent neural networks with fast convolutional layers, in: Proceedings of the 25-th International Conference on Digital Audio Effects (DAFx20in22). Ed. by G. Evangelista and N. Holighaus. Vol. 3. Vienna, Austria, Sept. 6–10, 2022, pp. 138–145. [Google Scholar]
  9. L. Lu, P. Jin, G. Pang, Z. Zhang, G. Karniadakis: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence 3, 3 (2021) 218–229. [CrossRef] [Google Scholar]
  10. M. Middleton, D.T Murphy, L. Savioja: The application of Fourier neural operator networks for solving the 2D linear acoustic wave equation, in: Proceedings of the 10th Convention of the European Acoustics Association, Turin, Italy. Forum Acusticum 2023, European Acoustics Association, 2023. [Google Scholar]
  11. N. Borrel-Jensen, S. Goswami, A. Engsig-Karup, G. Karniadakis, C-H. Jeong: Sound propagation in realistic interactive 3D scenes with parameterized sources using deep neural operators, Proceedings of the National Academy of Sciences 121, 2 (2024) e2312159120. [CrossRef] [PubMed] [Google Scholar]
  12. K. Kowalczyk, M. Van Walstijn: Wideband and isotropic room acoustics simulation using 2D interpolated FDTD schemes, IEEE Transactions on Audio, Speech, and Language Processing 18, 1 (2010) 78–89. [CrossRef] [Google Scholar]
  13. H. Kudo, T. Kashiwa, T. Ohtani: The non-standard FDTD method for three-dimensional acoustic analysis and its numerical dispersion and stability condition, Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 85, 9 (2002) 15–24. [CrossRef] [Google Scholar]
  14. D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, The Journal of the Acoustical Society of America 95, 5 (1994) 2313–2319. [CrossRef] [Google Scholar]
  15. L. Savioja, T. Rinne, T. Takala: Simulation of room acoustics with a 3-D finite difference mesh, in: The 1994 International Computer Music Conference, Aarhus, September 12–17, 1994, International Computer Music Association ICMA, United States, 1994, pp. 463–466. [Google Scholar]
  16. N. Borrel-Jensen, A.P. Engsig-Karup, C-H. Jeong: Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries, JASA Express Letters 1, 12 (2021) 122402. [CrossRef] [PubMed] [Google Scholar]
  17. M. Pezzoli, F. Antonacci, A. Sarti: Implicit neural representation with physics-informed neural networks for the reconstruction of the early part of room impulse responses, in: Proceedings of the 10th Convention of the European Acoustics Association, Turin, Italy. Forum Acusticum 2023, European Acoustics Association, 2023. [Google Scholar]
  18. T. Zhang, D. Trad, K. Innanen: Learning to solve the elastic wave equation with Fourier neural operators, Geophysics 88, 3 (2023) 101–119. [Google Scholar]
  19. B. Li, H. Wang, S. Feng, X. Yang, Y. Lin: Solving seismic wave equations on variable velocity models with fourier neural operator, IEEE Transactions on Geoscience and Remote Sensing 61 (2023) 1–18. [CrossRef] [Google Scholar]
  20. A. Choubineh, J. Chen, D.A. Wood, F. Coenen, F. Ma: Fourier neural operator for fluid flow in small-shape 2D simulated porous media dataset, Algorithms 16, 1 (2023) 24. [CrossRef] [Google Scholar]
  21. D. Hendrycks, K. Gimpel: Gaussian error linear units (GELUs), 2020. arXiv: 1606.08415 [cs.LG]. [Google Scholar]
  22. A. Emin Orhan, X. Pitkow: Skip connections eliminate singularities, 2018. arXiv: 1701.09175 [cs.NE]. [Google Scholar]
  23. L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G. Karniadakis: A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data, Computer Methods in Applied Mechanics and Engineering 393 (2022) 114778. [CrossRef] [Google Scholar]
  24. G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, S.M. Benson: U-FNO – an enhanced Fourier neural operator-based deep-learning model for multiphase flow, Advances in Water Resources 163 (2022) 104180. [CrossRef] [Google Scholar]
  25. A. de Cheveigné, I. Nelken: Filters: when, why, and how (not) to use them, Neuron 102, 2 (2019) 280–293. [CrossRef] [PubMed] [Google Scholar]
  26. A. Koloskova, H. Hendrikx, S.U. Stich: Revisiting gradient clipping: stochastic bias and tight convergence guarantees, in: Proceedings of the 40th International Conference on Machine Learning. Ed. by A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, J. Scarlett, vol. 202. Proceedings of Machine Learning Research. PMLR, 23–29 Jul 2023, pp. 17343–17363. https://proceedings.mlr.press/v202/koloskova23a.html. [Google Scholar]
  27. W.M. Czarnecki, S. Osindero, M. Jaderberg, G. Åwirszcz, R. Pascanu: Sobolev training for neural networks, 2017. arXiv: 1706.04859 [cs.LG]. [Google Scholar]
  28. I. Loshchilov, F. Hutter: SGDR: stochastic gradient descent with warm restarts, 2017. arXiv:1608.03983 [cs.LG]. [Google Scholar]
  29. F. Lehmann, F. Gatti, M. Bertin, D. Clouteau: Seismic hazard analysis with a Fourier neural operator (FNO) surrogate model enhanced by transfer learning, in: NeurIPS AI for Science workshop. New Orleans, United States, Dec. 2023. https://hal.science/hal-04476126. [Google Scholar]
  30. T.J. Grady, R. Khan, M. Louboutin, Z. Yin, P.A. Witte, R. Chandra, R.J. Hewett, F.J. Herrmann: Model-parallel Fourier neural operators as learned surrogates for large-scale parametric PDEs, Computers and Geosciences 178 (2023) 105402. [CrossRef] [Google Scholar]
  31. M. Zhu, S. Feng, Y. Lin, L. Lu: Fourier-DeepONet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability and robustness, Computer Methods in Applied Mechanics and Engineering 416 (2023) 116300. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.