Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 36
Number of page(s) 12
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2025019
Published online 11 June 2025
  1. A. Pelat, F. Gautier, S.C. Conlon, F. Semperlotti: The acoustic black hole: a review of theory and applications. Journal of Sound and Vibration 476 (2020) 115316. https://doi.org/10.1016/j.jsv.2020.115316 [CrossRef] [Google Scholar]
  2. M. Mironov: Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics: Acoustics 34 (1988) 318–319 [Google Scholar]
  3. T. Weimann, A. Molter, L. Fernandez, M. He: Structural vibration control based on the effect of acoustic black holes and piezoelectric actuators. Finite Elements in Analysis and Design 224 (2023) 103992. https://doi.org/10.1016/j.finel.2023.103992 [CrossRef] [Google Scholar]
  4. J. Deng, X. Chen, Y. Yang, Z. Qin, W. Guo: Periodic additive acoustic black holes to absorb vibrations from plates. International Journal of Mechanical Sciences 267 (2024) 108990. https://doi.org/10.1016/j.ijmecsci.2024.108990 [CrossRef] [Google Scholar]
  5. Y. Xiao, W. Shen, H. Zhu, Y. Du: An acoustic black hole absorber for rail vibration suppression: Simulation and full-scale experiment. Engineering Structures 304 (2024) 117647. https://doi.org/10.1016/j.engstruct.2024.117647 [CrossRef] [Google Scholar]
  6. X. Chen, Y. Jing, J. Zhao, J. Deng, X. Cao, H. Pu, H. Cao, X. Huang, J. Luo: Tunable shunting periodic acoustic black holes for low-frequency and broadband vibration suppression. Journal of Sound and Vibration 580 (2024) 118384. https://doi.org/10.1016/j.jsv.2024.118384 [CrossRef] [Google Scholar]
  7. H. Li, O. Doaré, C. Touzé, A. Pelat, F. Gautier: Energy harvesting efficiency of unimorph piezoelectric acoustic black hole cantilever shunted by resistive and inductive circuits. International Journal of Solids and Structures 238 (2022) 111409. https://doi.org/10.1016/j.ijsolstr.2021.111409 [CrossRef] [Google Scholar]
  8. J. Deng, O. Guasch, L. Zheng, T. Song, Y. Cao: Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. Journal of Sound and Vibration 494 (2021) 115790. https://doi.org/10.1016/j.jsv.2020.115790 [CrossRef] [Google Scholar]
  9. W. Du, Z. Xiang, X. Qiu: Stochastic analysis of an acoustic black hole piezoelectric energy harvester under gaussian white noise excitation. Applied Mathematical Modelling 131 (2024) 22–32. https://doi.org/10.1016/j.apm.2024.04.015 [CrossRef] [Google Scholar]
  10. Z. Zhang, H. Wang, C. Yang, H. Sun, Y. Yuan: Vibration energy harvester based on bilateral periodic one-dimensional acoustic black hole. Applied Sciences 13 (2023) 6423. https://doi.org/10.3390/app13116423 [CrossRef] [Google Scholar]
  11. J. Zhao, Y. Huang, W. Yuan, J. Zhang, C. Song, X. Zhang, Y. Pan: Broadband acoustic black hole for wave focusing and weak signal sensing. Applied Acoustics 200 (2022) 109078. https://doi.org/10.1016/j.apacoust.2022.109078 [CrossRef] [Google Scholar]
  12. X. Wang, X. Liu, T. He, D. Xiao, Y. Shan: Structural damage acoustic emission information enhancement through acoustic black hole mechanism. Measurement 190 (2022) 110673. https://doi.org/10.1016/j.measurement.2021.110673 [CrossRef] [Google Scholar]
  13. J. Fu, T. He, Z. Liu, Y. Bao, X. Liu: A novel waveguide rod with acoustic black hole for acoustic emission signal enhancement and its performance. Ultrasonics 138 (2024) 107260. https://doi.org/10.1016/j.ultras.2024.107260 [CrossRef] [PubMed] [Google Scholar]
  14. L. Zhao, C. Bi, M. Yu: Structural lens for broadband triple focusing and three-beam splitting of flexural waves. International Journal of Mechanical Sciences 240 (2023) 107907. https://doi.org/10.1016/j.ijmecsci.2022.107907 [CrossRef] [Google Scholar]
  15. J. Deng, L. Zheng, O. Guasch: Elliptical acoustic black holes for flexural wave lensing in plates. Applied Acoustics 174 (2021) 107744. https://doi.org/10.1016/j.apacoust.2020.107744 [CrossRef] [Google Scholar]
  16. M. Mironov, V. Pislyakov: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero. Acoustical Physics 48 (2002) 347–352 [CrossRef] [Google Scholar]
  17. A. Mousavi, M. Berggren, L. Hägg, E. Wadbro: Topology optimization of a waveguide acoustic black hole for enhanced wave focusing. The Journal of the Acoustical Society of America 155 (2024) 742–756. https://doi.org/10.1121/10.0024470 [CrossRef] [PubMed] [Google Scholar]
  18. M. Mironov, V. Pislyakov: One-dimensional sonic black holes: Exact analytical solution and experiments. Journal of Sound and Vibration 473 (2020) 115223. https://doi.org/10.1016/j.jsv.2020.115223 [CrossRef] [Google Scholar]
  19. A.A. El Ouahabi, V.V. Krylov, D.J. O’Boy: Experimental investigation of the acoustic black hole for sound absorption in air, in the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, 12–16 July, 2015 [Google Scholar]
  20. X. Zhang, N. He, L. Cheng, X. Yu, L. Zhang, F. Hu: Sound absorption in sonic black holes: wave retarding effect with broadband cavity resonance. Applied Acoustics 221 (2024) 110007. https://doi.org/10.1016/j.apacoust.2024.110007 [CrossRef] [Google Scholar]
  21. M. Červenka, M. Bednařík: On the role of resonance and thermoviscous losses in an implementation of “acoustic black hole” for sound absorption in air. Wave Motion 114 (2022) 103039. https://doi.org/10.1016/j.wavemoti.2022.103039 [CrossRef] [Google Scholar]
  22. M. Červenka, M. Bednařík: Maximizing the absorbing performance of rectangular sonic black holes. Applied Sciences 14 (2024) 7766. https://doi.org/10.3390/app14177766 [CrossRef] [Google Scholar]
  23. J. Deng, O. Guasch, D. Ghilardi: Solution and analysis of a continuum model of sonic black hole for duct terminations. Applied Mathematical Modelling 129 (2024) 191–206. https://doi.org/10.1016/j.apm.2024.01.046 [CrossRef] [Google Scholar]
  24. S. Li, X. Yu, L. Cheng: Enhancing wave retarding and sound absorption performances in perforation-modulated sonic black hole structures. Journal of Sound and Vibration 596 (2025) 118765. https://doi.org/10.1016/j.jsv.2024.118765 [CrossRef] [Google Scholar]
  25. Q. Mao, L. Peng: Broadband and high-efficiency acoustic energy harvesting with loudspeaker enhanced by sonic black hole. Sensors and Actuators A: Physical 379 (2024) 115888. https://doi.org/10.1016/j.sna.2024.115888 [CrossRef] [Google Scholar]
  26. S. Li, J. Xia, X. Yu, X. Zhang, L. Cheng: A sonic black hole structure with perforated boundary for slow wave generation. Journal of Sound and Vibration 559 (2023) 117781. https://doi.org/10.1016/j.jsv.2023.117781 [CrossRef] [Google Scholar]
  27. X. Zhang, L. Cheng: Broadband and low frequency sound absorption by sonic black holes with micro-perforated boundaries. Journal of Sound and Vibration 512 (2021) 116401. https://doi.org/10.1016/j.jsv.2021.116401 [CrossRef] [Google Scholar]
  28. Y. Chen, K. Yu, Q. Fu, J. Zhang, X. Lu, X. Du, X. Sun: A broadband and low-frequency sound absorber of sonic black holes with multi-layered micro-perforated panels. Applied Acoustics 217 (2024) 109817. https://doi.org/10.1016/j.apacoust.2023.109817 [CrossRef] [Google Scholar]
  29. K. Petrover, A. Baz: Acoustic black hole with functionally graded perforated rings. Journal of Applied Physics 135 (2024) 234501. https://doi.org/10.1063/5.0216724 [CrossRef] [Google Scholar]
  30. Y. Chen, K. Yu, Q. Fu, J. Zhang, X. Lu: Modification of the transfer matrix method for the sonic black hole and broadening effective absorption band. Mechanical Systems and Signal Processing 220 (2024) 111660. https://doi.org/10.1016/j.ymssp.2024.111660 [CrossRef] [Google Scholar]
  31. L. Peng, Q. Mao: Helmholtz resonator with sonic black hole neck. International Journal of Acoustics and Vibration 28 (2023) 460–468. https://doi.org/10.20855/ijav.2023.28.42006 [CrossRef] [Google Scholar]
  32. Y. Ou, Y. Zhao: Design, analysis, and experimental validation of a sonic black hole structure for near-perfect broadband sound absorption. Applied Acoustics 225 (2024) 110196. https://doi.org/10.1016/j.apacoust.2024.110196 [CrossRef] [Google Scholar]
  33. T. Bravo, C. Maury: Broadband sound attenuation and absorption by duct silencers based on the acoustic black hole effect: Simulations and experiments. Journal of Sound and Vibration 561 (2023) 117825. https://doi.org/10.1016/j.jsv.2023.117825 [CrossRef] [Google Scholar]
  34. T. Bravo, C. Maury: Converging rainbow trapping silencers for broadband sound dissipation in a low-speed ducted flow. Journal of Sound and Vibration 589 (2024) 118524. https://doi.org/10.1016/j.jsv.2024.118524 [CrossRef] [Google Scholar]
  35. J. Deng, O. Guasch: Sound waves in continuum models of periodic sonic black holes. Mechanical Systems and Signal Processing 205 (2023) 110853. https://doi.org/10.1016/j.ymssp.2023.110853 [CrossRef] [Google Scholar]
  36. F. Bikmukhametov, L. Glazko, Y. Muravev, D. Pozdeev, E. Vasiliev, S. Krasikov, M. Krasikova: Ventilated noise-insulating metamaterials inspired by sonic black holes, 2024. https://doi.org/10.48550/ARXIV.2409.02731 [Google Scholar]
  37. Y. Li, L. Li, L. Xiao, L. Cheng, X. Yu: Enhancing ventilation window acoustics with sonic black hole integration: a performance evaluation. Applied Acoustics 229 (2025) 110388. https://doi.org/10.1016/j.apacoust.2024.110388 [CrossRef] [Google Scholar]
  38. A. Mousavi, M. Berggren, E. Wadbro: How the waveguide acoustic black hole works: A study of possible damping mechanisms. Journal of the Acoustical Society of America 151 (2022) 4279–4290. https://doi.org/10.1121/10.0011788 [CrossRef] [PubMed] [Google Scholar]
  39. O. Umnova, D. Brooke, P. Leclaire, T. Dupont: Multiple resonances in lossy acoustic black holes – theory and experiment. Journal of Sound and Vibration 543 (2023) 117377. https://doi.org/10.1016/j.jsv.2022.117377 [CrossRef] [Google Scholar]
  40. M. Berggren, A. Mousavi, L. Hägg, E. Wadbro: Topology optimization of wave-focusing waveguide acoustic black holes. Journal of the Acoustical Society of America 153 (2023) A70. https://doi.org/10.1121/10.0018195 [CrossRef] [Google Scholar]
  41. G. Serra, O. Guasch, M. Arnela, D. Miralles: Optimization of the profile and distribution of absorption material in sonic black holes. Mechanical Systems and Signal Processing 202 (2023) 110707. https://doi.org/10.1016/j.ymssp.2023.110707 [CrossRef] [Google Scholar]
  42. M. Červenka, M. Bednařík: Numerical study of the behavior of rectangular acoustic black holes for sound absorption in air. Wave Motion 123 (2023) 103230. https://doi.org/10.1016/j.wavemoti.2023.103230 [CrossRef] [Google Scholar]
  43. H. Sheng, M.-X. He, H. Pueh Lee, Q. Ding: Quasi-periodic sonic black hole with low-frequency acoustic and elastic bandgaps. Composite Structures 337 (2024) 118046. https://doi.org/10.1016/j.compstruct.2024.118046 [CrossRef] [Google Scholar]
  44. V. Hruška, J.-P. Groby, M. Bednařík: Complex frequency analysis and source of losses in rectangular sonic black holes. Journal of Sound and Vibration 571 (2024) 118107. https://doi.org/10.1016/j.jsv.2023.118107 [CrossRef] [Google Scholar]
  45. M. Bednařík, M. Červenka: A sonic black hole of a rectangular cross-section. Applied Mathematical Modelling 125 (2024) 529–543. https://doi.org/10.1016/j.apm.2023.09.005 [CrossRef] [Google Scholar]
  46. G. Bezancon, O. Doutres, O. Umnova, P. Leclaire, T. Dupont: Thin metamaterial using acoustic black hole profiles for broadband sound absorption. Applied Acoustics 216 (2024) 109744. https://doi.org/10.1016/j.apacoust.2023.109744 [CrossRef] [Google Scholar]
  47. A. Mousavi, M. Berggren, E. Wadbro: Extending material distribution topology optimization to boundary-effect-dominated problems with applications in viscothermal acoustics. Materials & Design 234 (2023) 112302. https://doi.org/10.1016/j.matdes.2023.112302 [CrossRef] [Google Scholar]
  48. H. Hassanpour Guilvaiee, P. Heyes, C. Novotny, M. Kaltenbacher, F. Toth: A validated modeling strategy for piezoelectric mems loudspeakers including viscous effects. Acta Acustica 7 (2023) 24. https://doi.org/10.1051/aacus/2023019 [CrossRef] [EDP Sciences] [Google Scholar]
  49. M. Berggren, A. Bernland, D. Noreland: Acoustic boundary layers as boundary conditions. Journal of Computational Physics 371 (2018) 633–650. https://doi.org/10.1016/j.jcp.2018.06.005 [CrossRef] [Google Scholar]
  50. W.R. Kampinga, Y.H. Wijnant, A. de Boer: A finite element for viscothermal wave propagation. 23rd International Conference on Noise and Vibration Engineering 2008 (ISMA 2008) 7 (2008) 4271–4278 [Google Scholar]
  51. H. Hassanpour Guilvaiee, F. Toth, M. Kaltenbacher: A non-conforming finite element formulation for modeling compressible viscous fluid and flexible solid interaction. International Journal for Numerical Methods in Engineering 123 (2022) 6127–6147. https://doi.org/10.1002/nme.7106 [CrossRef] [Google Scholar]
  52. M. Kaltenbacher, F. Toth, H. Hassanpour Guilvaiee: openCFS (coupled field simulation): a finite element-based multi-physics modelling and simulation tool. Available at https://openCFS.org/ (accessed April 3, 2025) [Google Scholar]
  53. S. Greś, M. Döhler, L. Mevel: Uncertainty quantification of the modal assurance criterion in operational modal analysis. Mechanical Systems and Signal Processing 152 (2021) 107457. https://doi.org/10.1016/j.ymssp.2020.107457 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.