Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 35
Number of page(s) 11
Section Physical Acoustics
DOI https://doi.org/10.1051/aacus/2025017
Published online 03 June 2025
  1. C. Ge, E. Cretu: A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach. Microsystems & Nanoengineering 9, 1 (2023) 151 [CrossRef] [PubMed] [Google Scholar]
  2. Z. Mohammed, I.M. Elfadel, M. Rasras: Monolithic multi degree of freedom (MDoF) capacitive MEMS accelerometers. Micromachines 9, 11 (2018) 602 [CrossRef] [PubMed] [Google Scholar]
  3. Y. Li, L. Song, S. Liang, Y. Xiao, F. Yang: Nonlinear vibration study based on uncertainty analysis in MEMS resonant accelerometer. Sensors 20, 24 (2020) 7207 [CrossRef] [PubMed] [Google Scholar]
  4. H. Dong, Y. Jia, Y. Hao, S. Shen: A novel out-of-plane MEMS tunneling accelerometer. Sensors and Actuators A: Physical 120, 2 (2005) 360–364 [CrossRef] [Google Scholar]
  5. C. Caliendo: Conductometric sensing capabilities of Rayleigh modes in ZnO/Si structures. Journal of Physics D-Applied Physics 54, 8 (2021) 085101 [CrossRef] [Google Scholar]
  6. D. Mandal, S. Banerjee: Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 3 (2022) 820 [CrossRef] [PubMed] [Google Scholar]
  7. P. Hartemann, P.-L. Meunier: Surface acoustic wave accelerometer, in 1981 Ultrasonics Symposium. IEEE (1981) 152–154 [Google Scholar]
  8. W. Wang, Y. Huang, X. Liu, Y. Liang: Surface acoustic wave acceleration sensor with high sensitivity incorporating ST-X quartz cantilever beam. Smart Materials and Structures 24, 1 (2015) 015015 [CrossRef] [Google Scholar]
  9. Y. Zhao, J. Zhou, L. Kuang, Y. Guo, J. Xie, Y. Fu: Equal-strength beam design of acoustic wave accelerometers. Physica Scripta 98, 12 (2023) 125205 [CrossRef] [Google Scholar]
  10. Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, V. Laude: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Physical Review B 83, 10 (2011) 104201 [CrossRef] [Google Scholar]
  11. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza: Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Physical Review B 81, 21 (2010) 214303 [CrossRef] [Google Scholar]
  12. J.N. Kirchhof, K. Weinel, S. Heeg, V. Deinhart, S. Kovalchuk, K. Höflich, K.I. Bolotin: Tunable graphene phononic crystal. Nano Letters 21, 5 (2021) 2174–2182 [CrossRef] [PubMed] [Google Scholar]
  13. T.-T. Wu, W.-S. Wang, J.-H. Sun: A layered SAW device using phononic-crystal reflective gratings, in 2008 IEEE Ultrasonics Symposium. IEEE (2008) 709–712 [Google Scholar]
  14. M. Oudich, B. Djafari-Rouhani, B. Bonello, Y. Pennec, S. Hemaidia, F. Sarry, D. Beyssen: Rayleigh waves in phononic crystal made of multilayered pillars: confined modes, fano resonances, and acoustically induced transparency. Physical Review Applied 9, 3 (2018) 034013 [CrossRef] [Google Scholar]
  15. J. Bonhomme, M. Oudich, M.L.F. Bellaredj, J.-F. Bryche, P.A. Segura Chavez, D. Beyssen, P.G. Charette, F. Sarry: Micropillared surface to enhance the sensitivity of a love-wave sensor. Physical Review Applied 17, 6 (2022) 064024 [CrossRef] [Google Scholar]
  16. H. Jiang, W.K. Lu, Y.Y. Li, S.G. Shen: Analysis of a novel SAW acceleration sensor with cantilever beam using ST-X quartz. Applied Mechanics and Materials 189 (2012) 285–289 [CrossRef] [Google Scholar]
  17. A.L. Nalamwar, M. Epstein: Surface acoustic waves in strained media. Journal of Applied Physics 47, 1 (1976) 43–48 [CrossRef] [Google Scholar]
  18. B.K. Sinha, W.J. Tanski, T. Lukaszek, A. Ballato: Influence of biasing stresses on the propagation of surface waves. Journal of Applied Physics 57, 3 (1985) 767–776 [CrossRef] [Google Scholar]
  19. L. Kuang, J. Zhou, Y. Guo, H. Duan, Y.Q. Fu: Versatile and effective design platform for surface acoustic wave accelerometers. Physica Scripta 98, 8 (2023) 085408 [CrossRef] [Google Scholar]
  20. C.K. Kent, N. Ramakrishnan, H.P. Kesuma: Advancements in one-port surface acoustic wave (SAW) resonators for sensing applications: a review. IEEE Sensors Journal 24, 11 (2024) 17337–17352 [CrossRef] [Google Scholar]
  21. F. Kanouni, F. Laidoudi, S. Amara, K. Bouamama: Improvement of surface acoustic wave delay lines using C-Axis tilted AlScN thin film. Acoustical Physics 68, 5 (2022) 447–458 [CrossRef] [Google Scholar]
  22. G. Boldeiu, G.E. Ponchak, A. Nicoloiu, C. Nastase, I. Zdru, A. Dinescu, A. Müller: Investigation of temperature sensing capabilities of GaN/SiC and GaN/sapphire surface acoustic wave devices. IEEE Access 10 (2022) 741–752 [CrossRef] [Google Scholar]
  23. C.L. Cheng, Z.H. Lu, J.W. Yang, X.Y. Gong, Q.Q. Ke: Modulating the performance of the SAW strain sensor based on dual-port resonator using FEM simulation. Materials 16, 8 (2023) 3269 [CrossRef] [PubMed] [Google Scholar]
  24. Z. Ji, J. Zhou, H. Lin, J. Wu, D. Zhang, S. Garner, A. Gu, S. Dong, Y. Fu, H. Duan: Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications. Microsystems & Nanoengineering 7, 1 (2021) 97 [CrossRef] [PubMed] [Google Scholar]
  25. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani: Acoustic band structure of periodic elastic composites. Physical Review Letters 71, 13 (1993) 2022 [CrossRef] [PubMed] [Google Scholar]
  26. K. Wang, J.H. Yin, L. Cao, P.Y. Guo, G.T. Fan, J.Y. Qin, S. Yang: Investigation on waveguide and directional transmission properties of a tunable liquid-solid phononic crystal based on rotation of scatterer. Nano 20 (2024) 2450132 [Google Scholar]
  27. X.L. Zhou, J.H. Yin, K. Wang, S. Yang, L. Cao, P.Y. Guo: Band gap tuning and wave separator design in 3D composite slab structures based on periodic thermal fields. Mechanics of Advanced Materials and Structures 32 (2025) 1343–1351 [CrossRef] [Google Scholar]
  28. S. Benchabane, R. Salut, O. Gaiffe, V. Soumann, M. Addouche, V. Laude, A. Khelif: Surface-wave coupling to single phononic subwavelength resonators. Physical Review Applied 8, 3 (2017) 034016 [CrossRef] [Google Scholar]
  29. P.L. Tang, H.Z. Pan, T.B. Workie, J. Mi, J.F. Bao, K.Y. Hashimoto: Honeycomb-shaped phononic crystals on 42° Y–X LiTaO3/SiO2/Poly–Si/Si substrate for improved performance and miniaturization. Micromachines 15, 10 (2024) 1256 [CrossRef] [PubMed] [Google Scholar]
  30. M. Badreddine Assouar, M. Oudich: Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal. Applied Physics Letters 99, 12 (2011) 123505 [CrossRef] [Google Scholar]
  31. D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, V. Laude: Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate. Applied Physics Letters 100, 6 (2012) 061912 [CrossRef] [Google Scholar]
  32. D. Yudistira, A. Boes, B. Djafari-Rouhani, Y. Pennec, L.Y. Yeo, A. Mitchell, J.R. Friend: Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling. Physical Review Letters 113, 21 (2014) 215503 [CrossRef] [PubMed] [Google Scholar]
  33. J. Zhang, W.H. Cheng, H. Wang, L. Zhang, X.R. Li, H.S. Ma, J.Q. Pang, Q.L. Tan: Langasite-based SAW high-temperature vibration sensor with temperature decoupling. Science China-Technological Sciences 67 (2024) 1946–1956 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.