Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 34
Number of page(s) 13
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2025016
Published online 26 May 2025
  1. J. Pätynen, T. Lokki: Directivities of symphony orchestra instruments. Acta Acustica United with Acustica 96 (2010) 138–167 [CrossRef] [Google Scholar]
  2. A. Corcuera, V. Chatziioannou, J. Ahrens: Perceptual significance of tone-dependent directivity patterns of musical instruments. Journal of the Audio Engineering Society 71, 5 (2023) 293–302 [CrossRef] [Google Scholar]
  3. F. Otondo, J.H. Rindel: The influence of the directivity of musical instruments in a room. Acta Acustica United with Acustica 90, 6 (2004) 1178–1184 [Google Scholar]
  4. L.M. Wang and M.C. Vigeant: Evaluations of output from room acoustic computer modeling and auralization due to different sound source directionalities. Applied Acoustics 69, 12 (2008) 1281–1293 [CrossRef] [Google Scholar]
  5. J. Meyer: Acoustics and the Performance of Music: Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers. Springer Science & Business Media, 2009 [Google Scholar]
  6. M. Frank, M. Brandner: Perceptual evaluation of spatial resolution in directivity patterns, in: Proceedings of the 45th German Annual Conference on Acoustics, DAGA (2019) [Google Scholar]
  7. M. Frank, M. Brandner: Perceptual evaluation of spatial resolution in directivity patterns 2: coincident source/listener positions, in: Audio for Virtual, Augmented and Mixed Realities: Proceedings of ICSA 2019; 5th International Conference on Spatial Audio; September 26th to 28th, 2019, Ilmenau, Germany, 2019, pp. 131–135 [Google Scholar]
  8. T.W. Leishman, S.D. Bellows, C.M. Pincock, J.K. Whiting: High-resolution spherical directivity of live speech from a multiple-capture transfer function method. The Journal of the Acoustical Society of America 149, 3 (2021) 1507–1523 [CrossRef] [PubMed] [Google Scholar]
  9. M. Brandner, R. Blandin, M. Frank, A. Sontacchi: A pilot study on the influence of mouth configuration and torso on singing voice directivity. The Journal of the Acoustical Society of America 148, 3 (2020) 1169–1180 [CrossRef] [PubMed] [Google Scholar]
  10. C. Pörschmann, J.M. Arend: Investigating phoneme-dependencies of spherical voice directivity patterns II: various groups of phonemes. The Journal of the Acoustical Society of America 153, 1 (2023) 179–190 [CrossRef] [PubMed] [Google Scholar]
  11. C. Pörschmann, T. Lübeck, J.M. Arend: Impact of face masks on voice radiation. The Journal of the Acoustical Society of America 148, 6 (2020) 3663–3670 [CrossRef] [PubMed] [Google Scholar]
  12. C. Pörschmann, J.M. Arend: Analyzing the directivity patterns of human speakers, in: Proceedings of the 46th DAGA, 2020, pp. 16–19 [Google Scholar]
  13. J. Ehret, J. Stienen, C. Brozdowski, A. Bönsch, I. Mittelberg, M. Vorländer, T.W. Kuhlen:Evaluating the influence of phoneme-dependent dynamic speaker directivity of embodied conversational agents’ speech, in: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, 2020, pp. 1–8 [Google Scholar]
  14. B.N.J. Postma, H. Demontis, B.F.G. Katz: Subjective evaluation of dynamic voice directivity for auralizations. Acta Acustica United with Acustica 103, 2 (2017) 181–184 [CrossRef] [Google Scholar]
  15. H. Steffens, S. van de Par, S.D. Ewert: The role of early and late reflections on perception of source orientation. The Journal of the Acoustical Society of America 149, 4 (2021) 2255–2269 [CrossRef] [PubMed] [Google Scholar]
  16. A. Quélennec, P. Luizard: Pilot study on the influence of spatial resolution of human voice directivity on speech perception. Acta Acustica 6 (2022) 10 [CrossRef] [EDP Sciences] [Google Scholar]
  17. K.J. Bodon, T.W. Leishman: Development, evaluation, and validation of a high-resolution directivity measurement system for live musical instruments. The Journal of the Acoustical Society of America 138, 3 (2015) 1785–1785 [CrossRef] [Google Scholar]
  18. L. Aspöck, F. Brinkmann, D. Ackermann, S. Weinzierl, M. Vorländer: BRAS-benchmark for room acoustical simulation, 2019. https://doi.org/10.14279/depositonce-6726.2 [Google Scholar]
  19. D. Schröder: Physically Based Real-Time Auralization of Interactive Virtual Environments, Vol. 11. Logos Verlag Berlin GmbH, 2011 [Google Scholar]
  20. N.R. Shabtai, G. Behler, M. Vorländer, S. Weinzierl: Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. The Journal of the Acoustical Society of America 141, 2 (2017) 1246–1256 [CrossRef] [PubMed] [Google Scholar]
  21. J. Ahrens, S. Bilbao: Computation of spherical harmonic representations of source directivity based on the finite-distance signature. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2020) 83–92 [Google Scholar]
  22. M. Brandner, N. Meyer-Kahlen, M. Frank: Directivity pattern measurement of a grand piano for augmented acoustic reality, in: DAGA, 2020 [Google Scholar]
  23. T. Grothe, M. Kob: High resolution 3d radiation measurements on the bassoon, in: Proceedings of the International Symposium on Musical Acoustics, 2019 [Google Scholar]
  24. A.C. Marruffo, A. Mayer, A. Hofmann, V. Chatziioannou, W. Kausel: Experimental investigation of high-resolution measurements of directivity patterns, in: Proceedings of the 47th Annual Conference on Acoustics DAGA 2021, 2021 [Google Scholar]
  25. F. Zagala: Optimum-phase primal signal and radiation-filter modelling of musical instruments. Master thesis, Universität für Musik und Darstellende Kunst Graz, 2019 [Google Scholar]
  26. T. Deppisch, F. Zotter: Radiation Lobe Decomposition for Directivity Patterns. Fortschritte der Akustik, DAGA, Vienna, 2021, p. 5 [Google Scholar]
  27. K. Joshua Bodon, S.D. Bellows, T.W. Leishman: Musical instrument directivity, 2019. https://scholarsarchive.byu.edu/directivity/ [Google Scholar]
  28. F. Wefers: A free, open-source software package for directional audio data, in: Proceedings of the 36th German Annual Conference on Acoustics (DAGA 2010), Berlin, Germany, 2010 [Google Scholar]
  29. F. Brinkmann, A. Lindau, S. Weinzierl, G. Geissler, S. van de Par, M. Müller-Trapet, R. Opdam, M. Vorländer: The FABIAN Head-Related Transfer Function Data Base. Technische Universität Berlin, Berlin, 2017 [Google Scholar]
  30. F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin on room acoustical simulation and auralization. The Journal of the Acoustical Society of America 145, 4 (2019) 2746–2760 [CrossRef] [PubMed] [Google Scholar]
  31. W. Buchholtzer, J. Thilakan, M. Kob: The impact of acoustic environments on the perception of directivity of musical instruments, in: Proceedings of the 48th German Annual Conference on Acoustics (DAGA 2022), Stuttgart, Germany, 2022 [Google Scholar]
  32. International Telecommunication Union Radiocomminication Assembly: Methods for the subjective assessment of small impairments in audio systems. ITU-R Recommendation BS.1116-3, 2015 [Google Scholar]
  33. International Telecommunication Union: Method for the subjective assessment of intermediate quality level of audio systems. ITU-R Recommendation, 2015 [Google Scholar]
  34. T. Lokki, V. Pulkki: Evaluation of geometry-based parametric auralization, in: Audio Engineering Society Conference: 22nd International Conference: Virtual, Synthetic, and Entertainment Audio. Audio Engineering Society, 2002 [Google Scholar]
  35. P. Stade, J.M. Arend: A perception-based parametric model for synthetic late binaural reverberation. Fortschritte der Akustik–DAGA, 2016 [Google Scholar]
  36. T. Hidaka, L.L. Beranek, T. Okano: Interaural cross-correlation, lateral fraction, and low-and high-frequency sound levels as measures of acoustical quality in concert halls. The Journal of the Acoustical Society of America 98, 2 (1995) 988–1007 [CrossRef] [Google Scholar]
  37. T. Okano, L.L. Beranek, T. Hidaka: Relations among interaural cross-correlation coefficient (IACCE), lateral fraction (LFE), and apparent source width (ASW) in concert halls. The Journal of the Acoustical Society of America 104, 1 (1998) 255–265 [CrossRef] [PubMed] [Google Scholar]
  38. F. Wendt, M. Frank, F. Zotter, R. Höldrich: Directivity patterns controlling the auditory source distance, in: Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, 2016, pp. 5–9 [Google Scholar]
  39. A.W. Bronkhorst, T. Houtgast: Auditory distance perception in rooms. Nature 397, 6719 (1999) 517–520 [CrossRef] [PubMed] [Google Scholar]
  40. P. Zahorik: Assessing auditory distance perception using virtual acoustics. The Journal of the Acoustical Society of America 111, 4 (2002) 1832–1846 [CrossRef] [PubMed] [Google Scholar]
  41. E. Larsen, N. Iyer, C.R. Lansing, A.S. Feng: On the minimum audible difference in direct-to-reverberant energy ratio. The Journal of the Acoustical Society of America 124, 1 (2008) 450–461 [CrossRef] [PubMed] [Google Scholar]
  42. S. Klockgether, S. Van De Par: Just noticeable differences of spatial cues in echoic and anechoic acoustical environments. The Journal of the Acoustical Society of America 140, 4 (2016) EL352–EL357 [CrossRef] [PubMed] [Google Scholar]
  43. ISO: ISO 3382-1: Acoustics – Measurement of Room Acoustic Parameters. Part 1: Performance Spaces. ISO, 2009 [Google Scholar]
  44. M. Kato, H. Uematsu, M. Kashino, T. Hirahara: The effect of head motion on the accuracy of sound localization. Acoustical Science and Technology 24, 5 (2003) 315–317 [CrossRef] [Google Scholar]
  45. E. Hendrickx, P. Stitt, J.-C. Messonnier, J.-M. Lyzwa, B.F.G. Katz, C. de Boishéraud: Influence of head tracking on the externalization of speech stimuli for non-individualized binaural synthesis. The Journal of the Acoustical Society of America 141, 3 (2017) 2011–2023 [CrossRef] [PubMed] [Google Scholar]
  46. K.I. McAnally, R.L. Martin: Sound localization with head movement: implications for 3-d audio displays. Frontiers in Neuroscience 8 (2014) 210 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.