Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 57
Number of page(s) 12
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2025039
Published online 16 September 2025
  1. C.J. Nederveen: Acoustical Aspects of Woodwind Instruments. Northern Illinois University Press, 1969. [Google Scholar]
  2. V. Debut, J. Kergomard, F. Laloë: Analysis and optimisation of the tuning of the twelfths for a clarinet resonator. Applied Acoustics 66, 4 (2005) 365–409. [CrossRef] [Google Scholar]
  3. P. Guillemain, J. Kergomard, T. Voinier: Real-time synthesis of clarinet-like instruments using digital impedance models. The Journal of the Acoustical Society of America 118, 1 (2005) 483–494. [Google Scholar]
  4. P.-A. Taillard, F. Silva, P. Guillemain, J. Kergomard: Modal analysis of the input impedance of wind instruments. Application to the sound synthesis of a clarinet. Applied Acoustics 141 (2018) 271–280. [CrossRef] [Google Scholar]
  5. S. Karkar, C. Vergez, B. Cochelin: Oscillation threshold of a clarinet model: a numerical continuation approach. The Journal of the Acoustical Society of America 131, 1 (2012) 698–707. [CrossRef] [PubMed] [Google Scholar]
  6. T. Colinot, C. Vergez, P. Guillemain, J.-B. Doc: Multistability of saxophone oscillation regimes and its influence on sound production. Acta Acustica 5 (2021) 33. [CrossRef] [EDP Sciences] [Google Scholar]
  7. S. Terrien, C. Vergez, B. Fabre: Flute-like musical instruments: a toy model investigated through numerical continuation. Journal of Sound and Vibration 332, 15 (2013) 3833–3848. [CrossRef] [Google Scholar]
  8. J.-B. Doc, C. Vergez, S. Missoum: A minimal model of a single-reed instrument producing quasi-periodic sounds. Acta Acustica united with Acustica 100, 3 (2014) 543–554. [Google Scholar]
  9. V. Fréour, L. Guillot, H. Masuda, C. Vergez, B. Cochelin: Parameter identification of a physical model of brass instruments by constrained continuation. Acta Acustica 6 (2022) 9. [CrossRef] [EDP Sciences] [Google Scholar]
  10. V. Debut: Deux études d’un instrument de musique de type clarinette: analyse des fréquences propres du résonateur et calcul des auto-oscillations par décomposition modale. Ph.D. dissertation, Université de la Méditerranée-Aix-Marseille II, 2004. [Online]. Available: https://theses.hal.science/tel-00008711/. [Google Scholar]
  11. N. Szwarcberg, T. Colinot, C. Vergez, M. Jousserand: Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model. Acta Acustica 7 (2023) 16. [Google Scholar]
  12. N. Szwarcberg, T. Colinot, C. Vergez, M. Jousserand: Second register production on the clarinet: nonlinear losses in the register hole as a decisive physical phenomenon. The Journal of the Acoustical Society of America 156, 2 (2024) 726–739. [Google Scholar]
  13. M.L. Facchinetti, X. Boutillon, A. Constantinescu: Numerical and experimental modal analysis of the reed and pipe of a clarinet. The Journal of the Acoustical Society of America 113, 5 (2003) 2874–2883. [Google Scholar]
  14. A. Ernoult, J. Chabassier, S. Rodriguez, A. Humeau: Full waveform inversion for bore reconstruction of woodwind-like instruments. Acta Acustica 5 (2021) 47. [CrossRef] [EDP Sciences] [Google Scholar]
  15. F. Monteghetti: Analysis and discretization of time-domain impedance boundary conditions in aeroacoustics. Ph.D. dissertation, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), 2018. [Online]. Available: https://theses.hal.science/tel-01910643v1. [Google Scholar]
  16. P. Guillemain, F. Silva: De l’utilisation de la décomposition modale pour la synthèse sonore temps réel: écueils et solutions, in: 10ème Congrès Français d’Acoustique, 2010. [Online]. Available: https://hal.science/hal-00550553/. [Google Scholar]
  17. N. Szwarcberg, T. Colinot, C. Vergez, M. Jousserand: Minimal example for the article: geometric sensitivity of modal parameters in wind instrument models: a case study on saxophone intonation, 2025. [Online]. Available: https://doi.org/10.5281/zenodo.16150126. [Google Scholar]
  18. D. Váczi, T. Terebessy: The origins and evolution of the glissotar, 2024, https://glissonic.com/history/, accessed: 2025-06-17. [Google Scholar]
  19. J. Terroir, P. Guillemain: A simple dynamic tonehole model for real-time synthesis of clarinet-like instruments, in: ICMC. Citeseer, 2005. [Google Scholar]
  20. M. Postma: Soprano saxophone bore profiles, 2025, http://sax.mpostma.nl/, accessed: 2025-06-17. [Google Scholar]
  21. T. Colinot, N. Szwarcberg, C. Vergez, S. Missoum: Cartography of a multistable system using support vector machines, applied to a clarinet model. Nonlinear Dynamics 113, 11 (2025) 13031–13042. [Google Scholar]
  22. J.-B. Doc, C. Vergez: Oscillation regimes produced by an alto saxophone: influence of the control parameters and the bore inharmonicity. The Journal of the Acoustical Society of America 137, 4 (2015) 1756–1765. [Google Scholar]
  23. A.H. Benade: On woodwind instrument bores. The Journal of the Acoustical Society of America 31, 2 (1959) 137–146. [Google Scholar]
  24. J.P. Dalmont, C.J. Nederveen, V. Dubos, S. Ollivier, V. Meserette, E. te Sligte: Experimental determination of the equivalent circuit of an open side hole: linear and non linear behaviour. Acta Acustica United with Acustica 88, 4 (2002) 567–575. [Google Scholar]
  25. J. Gilbert, J. Kergomard, E. Ngoya: Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique. The Journal of the Acoustical Society of America 86, 1 (1989) 35–41. [Google Scholar]
  26. A. Chaigne, J. Kergomard: Acoustics of Musical Instruments. Springer, 2016. [Google Scholar]
  27. A. Lefebvre, G.P. Scavone: Characterization of woodwind instrument toneholes with the finite element method. The Journal of the Acoustical Society of America 131, 4 (2012) 3153–3163. [CrossRef] [PubMed] [Google Scholar]
  28. R. Tournemenne, J. Chabassier: A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance. Acta Acustica united with Acustica 105, 5 (2019) 838–849. [CrossRef] [Google Scholar]
  29. F. Silva, P. Guillemain, J. Kergomard, B. Mallaroni, A.N. Norris: Approximation formulae for the acoustic radiation impedance of a cylindrical pipe. Journal of Sound and Vibration 322, 1, 2 (2009) 255–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.