Open Access
Technical & Applied Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 2
Number of page(s) 16
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2020028
Published online 21 December 2020
  1. G. Grimm, J. Luberadzka, V. Hohmann: A toolbox for rendering virtual acoustic environments in the context of audiology. Acta Acustica united with Acustica 105 (2019) 566–578. https://doi.org/10.3813/AAA.919337. [CrossRef] [Google Scholar]
  2. F. Pausch, L. Aspöck, M. Vorländer, J. Fels: An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss. Trends in Hearing 22 (2018) 2331216518800871. https://doi.org/10.1177/2331216518800871. [CrossRef] [PubMed] [Google Scholar]
  3. F. Denk, S.M.A. Ernst, S.D. Ewert, B. Kollmeier: Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles. Trends in Hearing 22 (2018) 2331216518779313. https://doi.org/10.1177/2331216518779313. [Google Scholar]
  4. C. Oreinos, J.M. Buchholz: Measurement of a full 3D Set of HRTFs for in-ear and hearing aid microphones on a Head and Torso Simulator (HATS). Acta Acustica united with Acustica 99 (2013) 836–844. https://doi.org/10.3813/AAA.918662. [CrossRef] [Google Scholar]
  5. H.H. Kayser, S.D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, B. Kollmeier: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing 2009 (2009) 298605. https://doi.org/10.1155/2009/298605. [Google Scholar]
  6. F. Denk, S.D. Ewert, B. Kollmeier: Spectral directional cues captured by hearing device microphones in individual human ears. The Journal of the Acoustical Society of America 144 (2018) 2072–2087. https://doi.org/10.1121/1.5056173. [CrossRef] [PubMed] [Google Scholar]
  7. V. Durin, S. Carlile, P. Guillon, V. Best, S. Kalluri: Acoustic analysis of the directional information captured by five different hearing aid styles. The Journal of the Acoustical Society of America 136 (2014) 818–828. https://doi.org/10.1121/1.4883372. [CrossRef] [PubMed] [Google Scholar]
  8. P. Hoffmann, F. Christensen, D. Hammershøi: Quantitative assessment of spatial sound distortion by the semi-ideal recording point of a hear-through device. Proceedings of Meetings on Acoustics 19 (2013) 050018. https://doi.org/10.1121/1.4799631. [CrossRef] [Google Scholar]
  9. A.H. Moore, J.M. de Haan, M.S. Pedersen, P.A. Naylor, M. Brookes, J. Jensen: Personalized signal-independent beamforming for binaural hearing aids. The Journal of the Acoustical Society of America 145 (2019) 2971–2981. https://doi.org/10.1121/1.5102173. [CrossRef] [PubMed] [Google Scholar]
  10. P. Hoffmann, F. Christensen, D. Hammershøi: Insert earphone calibration for hear-through options, in: Proc. Audio Engineering Society Conference 51: Loudspeakers and Headphones, Helsinki, Finland, 2013, 1–8. [Google Scholar]
  11. F. Denk, H. Schepker, S. Doclo, B. Kollmeier: Equalization filter design for achieving acoustic transparency in a semi-open fit hearing device, in Proc. 13. ITG Conference on Speech Communication, Oldenburg, Germany, 2018, 226–230. [Google Scholar]
  12. V. Välimäki, A. Franck, J. Rämö, H. Gamper, L. Savioja: Assisted listening using a headset: Enhancing audio perception in real, augmented, and virtual environments. IEEE Signal Processing Magazine 32 (2015) 92–99. https://doi.org/10.1109/MSP.2014.2369191. [Google Scholar]
  13. A. Spriet, S. Doclo, M. Moonen, J. Wouters: Feedback control in Hearing Aids, in: Springer Handbook of Speech Processing. Benesty J., Mohan Sondhi M., Arden Huang Y., Editors, Springer, Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-49127-9_48. [Google Scholar]
  14. H. Dillon: Hearing Aids. 2nd ed., Boomerang Press, Turramurra, 2012. [Google Scholar]
  15. M. Blau, T. Sankowsky, A. Stirnemann, H. Oberdanner, N. Schmitt: Acoustics of open fittings. The Journal of the Acoustical Society of America 123 (2008) 3011. https://doi.org/10.1121/1.2932603. [Google Scholar]
  16. F. Denk, M. Lettau, H. Schepker, S. Doclo, R. Roden, M. Blau, J.-H. Bach, J. Wellmann, B. Kollmeier: A one-size-fits-all earpiece with multiple microphones and drivers for hearing device research. Proc. AES Conference on Headphone Technology, San Francisco, USA, 2019, pp. 1–9. [Google Scholar]
  17. M. Wille, P. Rasmussen: IEC 60318–4 Ear Simulator for Low Noise Measurements & Anthropometric Rubber Pinna, in: Proc. AES Conference on Headphone Technology, Aalborg, Denmark, 2016, 96–102. [Google Scholar]
  18. H. Schepker, F. Denk, B. Kollmeier, S. Doclo: Multi-loudspeaker equalization for acoustic transparency in a custom hearing device, in: ITG Conference on Speech Communication, Oldenburg, Germany, 2018, 31–35 [Google Scholar]
  19. H. Schepker, S.E. Nordholm, L.T.T. Tran, S. Doclo: Null-steering beamformer-based feedback cancellation for multi-microphone hearing aids with incoming signal preservation. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27 (2019) 679–691. https://doi.org/10.1109/TASLP.2019.2892234. [Google Scholar]
  20. S. Liebich, C. Anemuller, P. Vary, P. Jax, D. Ruschen, S. Leonhardt: Active noise cancellation in headphones by digital robust feedback control, in: Proc. 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 2016, 1843–1847. https://doi.org/10.1109/EUSIPCO.2016.7760567. [Google Scholar]
  21. S. Vogl, M. Blau: Transfer functions in the ear canal depending on different sources (Transferfunktionen im Gehörgang in Abhängigkeit verschiedener Quellen), in: Fortschirtte der Akustik – DAGA, Munich, Germany, 2018, 611–614. [Google Scholar]
  22. F. Rumsey: Headphone Technology: Hear-through, bone conduction, noise canceling. Journal of the Audio Engineering Society 67 (2019) 914–919. [Google Scholar]
  23. H. Schepker, S. Doclo: Active feedback suppression for hearing devices exploiting multiple loudspeakers, in: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, 2019. https://doi.org/10.1109/WASPAA.2019.8937187. [Google Scholar]
  24. T. Zurbrügg, A. Stirnemann, M. Kuster, H. Lissek: Objective and subjective validation of an active control approach to reduce the occlusion effect in hearing aids. Acta Acustica united with Acustica 101 (2015) 502–509. https://doi.org/10.3813/AAA.918847. [CrossRef] [Google Scholar]
  25. S. Vogl, M. Blau: Individualized prediction of the sound pressure at the eardrum for an earpiece with integrated receivers and microphones. The Journal of the Acoustical Society of America 145 (2019) 917–930. https://doi.org/10.1121/1.5089219. [CrossRef] [PubMed] [Google Scholar]
  26. R. Roden, N. Wulbusch, A. Chernov, F. Denk, M. Blau: Using an electro-acoustic model of a vented earpiece to predict the ear canal input impedance, in: Proc. Forum Acusticum, Lyon, France, 2020, 2593–2598. [Google Scholar]
  27. S. Doclo, W. Kellermann, S. Makino, S. Nordholm: Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones. IEEE Signal Processing Magazine 32 (2015) 18–30. https://doi.org/10.1109/MSP.2014.2366780. [Google Scholar]
  28. C. Pavlovic, H. Kayser, P. Maanen, T. Herzke, V. Hohmann, S.R. Prakash, R. Kasayan: Open portable platform for hearing aid research, in: Presented at the American Auditory Society Meeting (AAS), Scottsdale, USA, 2019, 1–3. [Google Scholar]
  29. T. Herzke, H. Kayser, F. Loshaj, G. Grimm, V. Hohmann: Open signal processing software platform for hearing aid research (openMHA), in: Proceedings of the Linux Audio Conference, Saint-Etienne, France, 2017, 35–42. [Google Scholar]
  30. Hoertech: InEar, and University of Oldenburg. Technical documentation: The Hearpiece, a one-size-fits all in-ear research hearing device, 2019, https://www.hoertech.de/en/devices/transparent-earpiece-2.html. [Google Scholar]
  31. InEar: InEar ProPhile Series. https://www.inear-monitoring.eu/en/produkte/inear-universelles-monitoring/monitoring-prophile-8.htm. Last visited 14.07.2020. [Google Scholar]
  32. F. Denk, M. Hiipakka, B. Kollmeier, S.M.A. Ernst: An individualised acoustically transparent earpiece for hearing devices. International Journal of Audiology 57 (2018) 62–70. https://doi.org/10.1080/14992027.2017.1294768. [Google Scholar]
  33. H. Hudde, S. Schmidt: Sound fields in generally shaped curved ear canals. The Journal of the Acoustical Society of America 125 (2009) 3146–3157. https://doi.org/10.1121/1.3097446. [CrossRef] [PubMed] [Google Scholar]
  34. P.-A. Hellstrom, A. Axelsson: Miniature microphone probe tube measurements in the external auditory canal. The Journal of the Acoustical Society of America 93 (1993) 907–919. https://doi.org/10.1121/1.405452. [CrossRef] [PubMed] [Google Scholar]
  35. F. Denk, J. Heeren, S.D. Ewert, B. Kollmeier, S.M.A. Ernst: Controlling the Head Position during individual HRTF Measurements and its Effect on Accuracy, in: Fortschritte der Akustik – DAGA, Kiel, Germany, 2017. [Google Scholar]
  36. P. Majdak, P. Balazs, B. Laback: Multiple exponential sweep method for fast measurement of head-related transfer functions. Journal of the Audio Engineering Society 55 (2007) 623–637. [Google Scholar]
  37. F. Denk, B. Kollmeier, S. Ewert: Removing reflections in semianechoic impulse responses by frequency-dependent truncation. Journal of the Audio Engineering Society 66 (2018) 146–153. https://doi.org/10.17743/jaes.2018.0002. [CrossRef] [Google Scholar]
  38. S. Müller, P. Massarani: Transfer-function measurement with sweeps. Journal of the Audio Engineering Society 49 (2001) 443–471. [Google Scholar]
  39. E.A.G. Shaw, R. Teranishi: Sound pressure generated in an external ear replica and real human ears by a nearby point source, The Journal of the Acoustical Society of America 44 (1968) 240–249. https://doi.org/10.1121/1.1911059. [CrossRef] [PubMed] [Google Scholar]
  40. M.D. Burkhard, R.M. Sachs: Anthropometric manikin for acoustic research. The Journal of the Acoustical Society of America 58 (1975) 214–222. https://doi.org/10.1121/1.380648. [CrossRef] [PubMed] [Google Scholar]
  41. N. Bisgaard, M.S.M.G. Vlaming, M. Dahlquist: Standard Audiograms for the IEC 60118-15 Measurement Procedure. Trends in Amplification 14 (2010) 113–120. https://doi.org/10.1177/1084713810379609. [CrossRef] [PubMed] [Google Scholar]
  42. D. Hammershøi, H. Møller: Sound transmission to and within the human ear canal. The Journal of the Acoustical Society of America 100 (1996) 408–427. https://doi.org/10.1121/1.415856. [CrossRef] [PubMed] [Google Scholar]
  43. A. Kulkarni, S. Colburn: Variability in the characterization of the headphone transfer-function. The Journal of the Acoustical Society of America 107 (2000) 1071–1074. https://doi.org/10.1121/1.428571. [CrossRef] [PubMed] [Google Scholar]
  44. M. Hiipakka, M. Tikander, M. Karjalainen: Modeling the external ear acoustics for insert headphone usage. Journal of the Audio Engineering Society 58 (2010) 269–281. [Google Scholar]
  45. T. Sankowsky-Rothe, D. Dalga, S. Doclo, M. Blau: Comparison of transfer functions in the ear canal for open-fitting hearing aids, in: Fortschritte der Akustik – DAGA, Merano, Italy, 2013, 873–874. [Google Scholar]
  46. M.R. Stinson, G.A. Daigle: Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture. The Journal of the Acoustical Society of America 121 (2007) 3689–3702. https://doi.org/10.1121/1.2722214. [CrossRef] [PubMed] [Google Scholar]
  47. F. Bonnet, H. Nelisse, M.A. Nogarolli, J. Voix: Individual in situ calibration of in-ear noise dosimeters. Applied Acoustics 157 (2020) 107015. https://doi.org/10.1016/j.apacoust.2019.107015. [CrossRef] [Google Scholar]
  48. Audio Engineering Society. AES69-2015 standard for file exchange – Spatial acoustic data file format, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.