Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 34
Number of page(s) 16
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2024023
Published online 09 September 2024
  1. F. Jacobsen: A note on instantaneous and time averaged active and reactive sound intensity. JSV 147, 3 (1991) 489–496. [Online]. Available: https://doi.org/10.1016/0022-460X(91)90496-7. [CrossRef] [Google Scholar]
  2. R.K. Cook, R. Waterhouse, R. Berendt, S. Edelman, M. Thompson Jr: Measurement of correlation coefficients in reverberant sound fields. JASA 27, 6 (1955) 1072–1077. [Online]. Available: https://doi.org/10.1121/1.1908122. [CrossRef] [Google Scholar]
  3. C. Balachandran: Random sound field in reverberation chambers. JASA 31, 10 (1959) 1319–1321. [Online]. Available: https://doi.org/10.1121/1.1907626. [CrossRef] [Google Scholar]
  4. H. Kuttruff: Raumakustische Korrelationsmessungen mit einfachen Mitteln. Acustica 13 (1963) 120–122. [Google Scholar]
  5. P. Dämmig: Zur Messung der Diffusität von Schallfeldern durch Korrelation. Acta Acustica United with Acustica 7, 6 (1957) 387–398. [Online]. Available: https://www.ingentaconnect.com/content/dav/aaua/1957/00000007/00000006/art00008#. [Google Scholar]
  6. R. Thiele: Richtungsverteilung und Zeitfolge der Schallrückwürfe in Räumen. Acta Acustica United with Acustica 3, 4 (1953) 291–302. [Online]. Available: https://www.ingentaconnect.com/content/dav/aaua/1953/00000003/a00204s2/art00007. [Google Scholar]
  7. I. Veit, H. Sander: Production of spatially limited “diffuse” sound field in an anechoic room. JAES 35, 3 (1987) 138–143. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=5219. [Google Scholar]
  8. V. Pulkki: Spatial sound reproduction with directional audio coding. JAES 55, 6 (2007) 503–516. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=14170. [Google Scholar]
  9. J. Ahonen, V. Pulkki: Diffuseness estimation using temporal variation of intensity vectors. In: IEEE WASPAA, IEEE, 2009, pp. 285–288. [Online]. Available: https://doi.org/10.1109/ASPAA.2009.5346496. [Google Scholar]
  10. G. Del Galdo, M. Taseska, O. Thiergart, J. Ahonen, V. Pulkki: The diffuse sound field in energetic analysis. JASA 131, 3 (2012) 2141–2151. [Online]. Available: https://doi.org/10.1121/1.3682064. [CrossRef] [PubMed] [Google Scholar]
  11. F. Jacobsen: Active and reactive sound intensity in a reverberant sound field. JSV 143, 2 (1990) 231–240. [Online]. Available: https://doi.org/10.1016/0022-460X(90)90952-V. [CrossRef] [Google Scholar]
  12. F. Jacobsen: Active and reactive, coherent and incoherent sound fields. JSV 130, 3 (1989) 493–507. [Online]. Available: https://doi.org/10.1016/0022-460X(89)90072-2. [CrossRef] [Google Scholar]
  13. M.A. Gerzon: General metatheory of auditory localisation. In: 92nd AES Conv., Vienna, March 1992. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=6827. [Google Scholar]
  14. J. Merimaa: Energetic sound field analysis of stereo and multichannel loudspeaker reproduction. In: 123rd AES Conv., New York, October 2007. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=14315. [Google Scholar]
  15. N. Epain, C.T. Jin: Spherical harmonic signal covariance and sound field diffuseness. IEEE/ACM TASLP 24, 10 (2016) 1796–1807. [Online]. Available: https://doi.org/10.1109/TASLP.2016.2585862. [Google Scholar]
  16. D. Schröder: Physically based real-time auralization of interactive virtual environments. Ph.D. dissertation, RWTH Aachen, 2011. [Online]. Available: https://publications.rwth-aachen.de/record/50580/files/3875.pdf. [Google Scholar]
  17. M. Vorländer: Auralization. In: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. 2nd ed., Springer Nature, Switzerland, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-51202-6. [Google Scholar]
  18. H. Okubo, M. Otani, R. Ikezawa, S. Komiyama, K. Nakabayashi: A system for measuring the directional room acoustical parameters. Applied Acoustics 62, 2 (2001) 203–215. [Online]. Available: https://doi.org/10.1016/S0003-682X(00)00056-6. [CrossRef] [Google Scholar]
  19. B.N. Gover, J.G. Ryan, M.R. Stinson: Measurements of directional properties of reverberant sound fields in rooms using a spherical microphone array. JASA 116, 4 (2004) 2138–2148. [Online]. Available: https://doi.org/10.1121/1.1787525. [CrossRef] [Google Scholar]
  20. K. Merimaa, V. Pulkki: Spatial impulse response rendering I: analysis and synthesis. JAES 53, 12 (2005) 1115–1127. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=13401. [Google Scholar]
  21. S. Tervo, J. Pätynen, A. Kuusinen, T. Lokki: Spatial decomposition method for room impulse responses. JAES 61, 1/2 (2013) 17–28. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=16664. [Google Scholar]
  22. M. Nolan, E. Fernandez-Grande, J. Brunskog, C.-H. Jeong: A wavenumber approach to quantifying the isotropy of the sound field in reverberant spacesa. JASA 143, 4 (2018) 2514–2526. [Online]. Available: https://doi.org/10.1121/1.5032194. [CrossRef] [PubMed] [Google Scholar]
  23. M. Berzborn, M. Vorländer: Directional sound field decay analysis in performance spaces. Building Acoustics 28, 3 (2021) 249–263. [Online]. Available: https://doi.org/10.1177/1351010X20984622. [CrossRef] [Google Scholar]
  24. P. Massé, T. Carpentier, O. Warusfel, M. Noisternig: Denoising directional room impulse responses with spatially anisotropic late reverberation tails. Applied Sciences 10, 3 (2021) 1033. [Online]. Available: https://doi.org/10.3390/app10031033. [Google Scholar]
  25. B. Alary, P. Massé, S.J.S. anad Markus Noisternig, V. Välimäki: Perceptual analysis of directional late reverberation. JASA 149, 5 (2021) 3189–3199. [Online]. Available: https://doi.org/10.1121/10.0004770. [CrossRef] [PubMed] [Google Scholar]
  26. D. Romblom: Diffuse field modeling– the physical and perceptual properties of spatialized reverberation. Ph.D. dissertation, McGill University, Montréal, 2016. [Online]. Available: https://escholarship.mcgill.ca/downloads/rf55zb38p. [Google Scholar]
  27. P. Coleman, A. Franck, P.J.B. Jackson, R.J. Hughes, L. Remaggi, F. Melchior: Objectbased reverberation for spatial audio. JAES 65, 1/2 (2017) 66–77. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=18544. [Google Scholar]
  28. G. Götz, S.J. Schlecht, V. Pulkki: Common-slope modeling of late reverberation in coupled rooms. In: ICA, Gyeongju, October 2022. [Online]. Available: https://ica2022korea.org/data/Proceedings_A12.pdf. [Google Scholar]
  29. C. Hold, T. McKenzie, G. Götz,S.J. Schlecht, V. Pulkki: Resynthesis of spatial room impulse response tails with anisotropic multi-slope decays. JAES 70, 6 (2022) 526–538. [Online]. Available: https://doi.org/10.17743/jaes.2022.0017. [Google Scholar]
  30. T. Deppisch, S.V.A. Garí, P. Calamia, J. Ahrens: Direct and residual subspace decomposition of spatial room impulse responses. IEEE/ACM TASLP 31 (2023) 927–942. [Online]. Available: https://doi.org/10.1109/TASLP.2023.3240657. [Google Scholar]
  31. C.V. Hoorickx, E.P. Reynders: Numerical realization of diffuse sound pressure fields using prolate spheroidal wave functions. JASA 151, 3 (2022) 1710–1721. [Online]. Available: https://doi.org/10.1121/10.0009764. [CrossRef] [PubMed] [Google Scholar]
  32. O. Robin, A. Berry, O. Doutres, N. Atalla: Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field. JASA-EL 136 (2014) EL13–EL19. [Online]. Available: https://doi.org/10.1121/1.4881321. [CrossRef] [PubMed] [Google Scholar]
  33. S. Dupont, M. Sanalatii, M. Melon, O. Robin, A. Berry, J.-C. Le Roux: Measurement of the diffuse field sound absorption using a sound field synthesis method. Acta Acustica 7 (2023) 26. [Online]. Available: https://doi.org/10.1051/aacus/2023021. [CrossRef] [EDP Sciences] [Google Scholar]
  34. E. Habets, S. Gannot: Generating sensor signals in isotropic noise fields. JASA 122, 6 (2007) 3464–3470. [Online]. Available: https://doi.org/10.1121/1.2799929. [CrossRef] [PubMed] [Google Scholar]
  35. M. Kustner: Spatial correlation and coherence in reverberant acoustic fields: extension to microphones with arbitrary first-order directivity. JASA 123, 1 (2008) 152–164. [Online]. Available: https://doi.org/10.1121/1.2812592. [Google Scholar]
  36. N. Akbar, G. Dickins, M.R.P. Thomas, P. Samarasinghe, T. Abhayapala: A novel method for obtaining diffuse field measurements for microphone calibration. In: IEEE ICASSP, Barcelona, 2020. [Online]. Available: https://doi.org/10.1109/ICASSP40776.2020.9054728. [Google Scholar]
  37. G. Theile: Comparison of two dummy head systems with due regard to different fields of application. In: DAGA, Darmstadt, 84a0223.pdf, 1984. [Online]. Available: https://pub.dega-akustik.de/DAGA.1982-1990.zip. [Google Scholar]
  38. T. McKenzie, D.T. Murphy, G. Kearney: Diffuse-field equalisation of binaural ambisonic rendering. Applied Sciences 8, 10 (2018) 1956. [Online]. Available: https://doi.org/10.3390/app8101956. [CrossRef] [Google Scholar]
  39. C. Armstrong, L. Thresh, D. Murphy, G. Kearney: A perceptual evaluation of individual and non-individual HRTFs: a case study of the SADIE II database. Applied Sciences 8, 11 (2018) 2029. [Online]. Available: https://doi.org/10.3390/app8112029. [CrossRef] [Google Scholar]
  40. D.J. Moreau, J. Ghan, B. Cazzolato, A. Zander: Active noise control in a pure tone diffuse sound field using virtual sensing. JASA 125, 6 (2009) 3742–3755. [Online]. Available: https://doi.org/10.1121/1.3123404. [CrossRef] [PubMed] [Google Scholar]
  41. F. Holzmüller, A. Sontacchi: Frequency limitation for optimized perception of local active noise control. In: DAGA, Hamburg, March 2023. [Online]. Available: https://pub.dega-akustik.de/DAGA.2023/data/articles/000531.pdf. [Google Scholar]
  42. S.J. Elliott, P. Joseph, A. Bullmore, P.A. Nelson: Active cancellation at a point in a pure tone diffuse sound field. Journal of Sound and Vibration 120, 1 (1988) 183–189. [Online]. Available: https://doi.org/10.1006/jsvi.1996.0742. [CrossRef] [Google Scholar]
  43. A. Walther, C. Faller: Assessing diffuse sound field reproduction capabilities of multichannel playback systems. In: 130th AES Conv., London, May 2011. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=15895. [Google Scholar]
  44. K. Hiyama, S. Komiyama, K. Hamasaki: The minimum number of loudspeakers and its arrangement for reproducing the spatial impression of diffuse sound field. In: 113th AES Conv., Los Angeles, October 2002. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=11272. [Google Scholar]
  45. M.P. Cousins, F.M. Fazi, S. Bleeck, F. Melchior: Subjective diffuseness in layerbased loudspeaker systems with height. In: 139th AES Conv., New York, October 2015. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=17983. [Google Scholar]
  46. M. Cousins: The diffuse sound object. Ph.D. dissertation, University of Southampton, 2018. [Online]. Available: https://eprints.soton.ac.uk/442615/1/Thesis_Final_Submitted_19_06_2019.pdf. [Google Scholar]
  47. S. Riedel, M. Frank, F. Zotter: The effect of temporal and directional density on listener envelopment. JAES 71, 7/8 (2023) 455–467. [Online]. Available: https://doi.org/10.17743/jaes.2022.0088. [Google Scholar]
  48. A. Berkhout, D. de Vries, P. Vogel: Acoustic control by wave field synthesis. JASA 93, 5 (1993) 2764–2778. [Online]. Available: https://doi.org/10.1121/1.405852. [CrossRef] [Google Scholar]
  49. E.W. Start: Direct sound enhancement using wave field synthesis. Ph.D. dissertation, TU Delft, 1997. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid:c80d5b58-67d3-4d84-9e73-390cd30bde0d/datastream/OBJ/download. [Google Scholar]
  50. E. Verheijen: Sound reproduction by wave field synthesis. Ph.D. dissertation, TU Delft, 1998. [Online]. Available: https://www.dbvision.nl/bestanden/overons/publicaties/ouder/Thesis_Edwin_Verheijen.pdf. [Google Scholar]
  51. T. Caulkins: Caractérisation et contrôle du rayonnement d’un système de wave field synthesis pour la situation de concert. Ph.D. dissertation, Université de Paris 6, 2007. [Online]. Available: http://architexte.ircam.fr/textes/Caulkins07a/index.pdf. [Google Scholar]
  52. J. Ahrens: Analytic methods of sound field synthesis, Springer Berlin Heidelberg, 2012. [Online]. Available: https://doi.org/10.1007/978-3-642-25743-8. [CrossRef] [Google Scholar]
  53. G. Firtha, P. Fiala, F. Schultz, S. Spors: Improved referencing schemes for 2.5D wave field synthesis driving functions. IEEE/ACM TASLP 25, 5 (2017) 1117–1127. [Online]. Available: https://doi.org/10.1109/TASLP.2017.2689245. [Google Scholar]
  54. F. Winter: Local sound field synthesis. Ph.D. dissertation, University of Rostock, 2019. [Online]. Available: https://doi.org/10.18453/rosdok_id00002568. [Google Scholar]
  55. P. Grandjean, A. Berry, P.-A. Gauthier: Sound field reproduction by combination of circular and spherical higher-order ambisonics: Part I – a new 2.5-D driving function for circular arrays. JAES 69, 3 (2021) 152–165. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=21024. [Google Scholar]
  56. R. Nicol: Restitution sonore spatialisée sur une zone étendue: Application à la téléprésence. Ph.D. dissertation, Université du Maine, 1999. [Online]. Available: https://theses.hal.science/tel-01067541/document. [Google Scholar]
  57. J. Daniel: Représentation de champs acoustiques, application à la transmission et à la reproduction de scénes sonores complexes dans un contexte multimédia. Ph.D. dissertation, Université de Paris 6, 2001. [Online]. Available: http://gyronymo.free.fr/audio3D/downloads/These-original-version.zip. [Google Scholar]
  58. D. Ward, T. Abhayapala: Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE TASAP 9, 6 (2001) 697–707. [Online]. Available: https://doi.org/10.1109/89.943347. [Google Scholar]
  59. M.A. Poletti: Three-dimensional surround sound systems based on spherical harmonics. JAES 53, 11 (2005) 1004–1025. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=13396. [Google Scholar]
  60. S. Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, F. Zotter: Spatial sound with loudspeakers and its perception: A review of the current state. Proceedings of the IEEE 101, 9 (2013) 1920–1938. [Online]. Available: https://doi.org/10.1109/JPROC.2013.2264784. [CrossRef] [Google Scholar]
  61. M. Frank: Phantom sources using multiple loudspeakers in the horizontal plane. Ph.D. dissertation, University of Music and Performing Arts Graz, 2013. [Online]. Available: https://phaidra.kug.ac.at/o:7008. [Google Scholar]
  62. H. Wierstorf: Perceptual assessment of sound field synthesis. Ph.D. dissertation, TU Berlin, 2014. [Online]. Available: https://doi.org/10.14279/depositonce-4310. [Google Scholar]
  63. P. Stitt, S. Bertet, M. van Walstijn: Offcentre localisation performance of ambisonics and hoa for large and small loudspeaker array radii. Acta Acustica United with Acustica 100, 5 (2014) 937–944. [Online]. Available: https://doi.org/10.3813/AAA.918773. [CrossRef] [Google Scholar]
  64. M. Kuntz, B.U. Seeber: Sound field synthesis: Simulation and evaluation of auralized interaural cues over an extended area. In: Euronoise, Madeira, October 2021. [Online]. Available: https://mediatum.ub.tum.de/doc/1634172/wd5xy0emuqxi7wicws365j5oe.Kun_See_EuroNoise21.pdf. [Google Scholar]
  65. M. Kuntz, B.U. Seeber: Investigating the smoothness of moving sources reproduced with panning methods. In: DAGA, March, Stuttgart 2022. [Online]. Available: https://pub.dega-akustik.de/DAGA_2022/data/articles/000363.pdf. [Google Scholar]
  66. J.-J. Sonke: Variable acoustics by wave field synthesis. Ph.D. dissertation, TU Delft, 2000. [Online]. Available: http://resolver.tudelft.nl/uuid:2039d23c-4da3-4021-9fb1-2c21b4cf7275. [Google Scholar]
  67. J. Ahrens: Perceptual evaluation of the diffuseness of synthetic late reverberation created by wave field synthesis at different listening positions. In: DAGA, Nürnberg, March 2015. [Online]. Available: http://pub.dega-akustik.de/DAGA_2015/data/articles/000169.pdf. [Google Scholar]
  68. M. Frank, F. Zotter: Exploring the perceptual sweet area in ambisonics. In: 142nd AES Conv., Berlin, 2017. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=18604. [Google Scholar]
  69. B. Alary, A. Politis, S.J. Schlecht, V. Välimäki: Directional feedback delay network. JAES 67, 10 (2019) 752–762. [Online]. Available: https://doi.org/10.17743/jaes.2019.0026. [Google Scholar]
  70. P. Damaske, Y. Ando: Interaural crosscorrelation for multichannel loudspeaker reproduction. Acta Acustica united with Acustica 27, 4 (1972) 232–238. [Online]. Available: https://www.ingentaconnect.com/content/dav/aaua/1972/00000027/00000004/art00011 [Google Scholar]
  71. A. Walther, C. Faller: Interaural correlation discrimination from diffuse field reference correlations. JASA 133, 3 (2013) 1496–1502. [Online]. Available: https://doi.org/10.1121/1.4790473. [CrossRef] [PubMed] [Google Scholar]
  72. M.P. Cousins, S. Bleeck, F. Melchior, F.M. Fazi: Relation between acoustic measurements and the perceived diffuseness of a synthesised sound field. In: Proc ICA, Buenos Aires, September 2016. [Online]. Available: https://eprints.soton.ac.uk/398728/1/Michael_Cousins_ICA_2016_Final.pdf. [Google Scholar]
  73. S. Riedel, M. Frank, F. Zotter, R. Sazdov: A study on loudspeaker spl decays for envelopment and engulfment across an extended audience. In: AES ASR Conf., Le Mans, Jan 2024. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=22368. [Google Scholar]
  74. R. Sazdov, G. Paine, K. Stevens: Perceptual investigation into envelopement, spatial clarity, and engulfment in reproduced multi-channel audio. In: 31st Int. AES Conf., 2007. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=13961. [Google Scholar]
  75. T. Tanaka, M. Otani: An isotropic sound field model composed of a finite number of plane waves. Acoustical Science and Technology 44, 4 (2023) 317–327. [Online]. Available: https://doi.org/10.1250/ast.44.317. [CrossRef] [Google Scholar]
  76. C. Kirsch, T. Wendt, S. van de Par, H. Hu, S.D. Ewert: Computationally-efficient simulation of late reverberation for inhomogeneous boundary conditions and coupled rooms. JAES 17, 4 (2023) 186–201. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=22040. [Google Scholar]
  77. Study Group 6: Advanced sound system for programme production. Recommendation, Broadcasting Service (sound), no. ITUR BS.2051-3, 5 2022. [Online]. Available: https://www.itu.int/rec/R-REC-BS.2051/en. [Google Scholar]
  78. P. Heidegger, B. Brands, L. Langgartner, M. Frank: Sweet area using ambisonics with simulated line arrays. In: DAGA, Vienna, August 2020. [Online]. Available: https://pub.dega-akustik.de/DAGA_2021/data/articles/000374.pdf. [Google Scholar]
  79. M. Blochberger, F. Zotter, M. Frank: Sweet area size for the envelopment of a recursive and a non-recursive diffuseness rendering approach. In: ICSA, Ilmenau, 2019, pp. 151–157. [Online]. Available: https://doi.org/10.22032/dbt.39969. [Google Scholar]
  80. S. Riedel, F. Zotter: Surrounding line sources optimally reproduce diffuse envelopment at offcenter listening positions. JASA-EL 2, 9 (2022) 094404. [Online]. Available: https://doi.org/10.1121/10.0014168. [Google Scholar]
  81. S. Riedel, L. Goelles, M. Frank, F. Zotter: Modeling the listening area of envelopment. In: DAGA, Hamburg, March 2023. [Online]. Available: https://pub.dega-akustik.de/DAGA_2023/data/articles/000289.pdf. [Google Scholar]
  82. F. Melchior, C. Sladeczek, D. de Vries, B. Frohlich: User-dependent optimization of wave field synthesis reproduction for directive sound fields. In: 124th AES Conv., Amsterdam, May 2008. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=14506. [Google Scholar]
  83. G. Firtha: A generalized wave field synthesis framework–with application for moving virtual sources. Ph.D. dissertation, Budapest University of Technology and Economics, 2019. [Online]. Available: http://last.hit.bme.hu/download/firtha/PhD_thesis/firtha_phd_thesis.pdf. [Google Scholar]
  84. F. Jacobsen, T. Roisin: The coherence of reverberant sound fields. JASA 108, 1 (2000) 204–210. [Online]. Available: https://doi.org/10.1121/1.429457. [CrossRef] [PubMed] [Google Scholar]
  85. H. Kuttruff: Room Acoustics. 6th edn., CRC Press, Boca Raton, 2016. https://doi.org/10.1201/9781315372150 [CrossRef] [Google Scholar]
  86. F. Fahy: Foundations of Engineering Acoustics, Elsevier Academic Press, San Diego, 2000. https://doi.org/10.1016/B978-0-12-247665-5.X5000-0. [Google Scholar]
  87. M. Gräf: Quadrature rules on manifolds. accessed 2023/04/23. [Online]. Available: https://www-user.tu-chemnitz.de/~potts/workgroup/graef/quadrature/. [Google Scholar]
  88. B.B. Baker, E.T. Copson: The mathematical theory of Huygens’ principle, 3rd edn. Chelsea Publishing, American Mathematical Society 2001, 1987 (1st edition 1939). [Google Scholar]
  89. G. Green: An essay on the application of mathematical analysis to the theories of electricity and magnetism, facsimile-druck in 100 exemplaren, Berlin, 1889 edn., Nottingham, 1828. [Online]. Available: http://books.google.at/books. [Google Scholar]
  90. I. Newton: The mathematical principles of natural philosophy. B. Motte, 1729, tranlation by Andrew Motte. [Online]. Available: https://en.wikisource.org/wiki/. [Google Scholar]
  91. D. Hilbert, R. Courant: Methoden der mathematischen Physik II, Springer, Berlin, 1937. [Google Scholar]
  92. NIST Digital Library of Mathematical Functions. Release 1.1.9 of 2023-03-15, f. W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, M.A. McClain, eds. [Online]. Available: https://dlmf.nist.gov/. [Google Scholar]
  93. E. Skudrzyk: The foundations of acoustics, Springer Wien, New York, 1971. [CrossRef] [Google Scholar]
  94. A. Sommerfeld: Partial differential equations in physics, Academic Press, New York, 1949. [Google Scholar]
  95. F. Zotter, S. Riedel, L. Gölles, M. Frank: Source code for diffuse sound field synthesis, 2023. [Online]. Available: https://git.iem.at/enimso/2023-diffuse-soundfield-synthesis-acta-jupyter-code. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.