Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 40
Number of page(s) 17
DOI https://doi.org/10.1051/aacus/2024028
Published online 18 October 2024
  1. World Health Organization Regional Office For Europe: Burden of disease from environmental noise – quantification of healthy life years lost in Europe, 2011. Available at http://www.euro.who.int/en/health-topics/environment-and-health/noise. [Google Scholar]
  2. M. Basner, W. Babisch, A. Davis, M. Brink, C. Clark, S. Janssen, S. Stansfeld: Auditory and non-auditory effects of noise on health, Lancet 383, 9925 (2014) 1325–1332. [CrossRef] [PubMed] [Google Scholar]
  3. European Environment Agency: Noise in Europe 2014, 2014. Available at http://www.eea.europa.eu/publications/noise-in-europe-2014. [Google Scholar]
  4. M.B.S. Magalhaes, R.A. Tenenbaum: Sound sources reconstruction techniques: a review of their evolution and new trends, Acta Acustica united with Acustica 90, 2 (2004) 199–220. [Google Scholar]
  5. J. Lanslots, F. Deblauwe, K. Janssens: Selecting sound source localization techniques for industrial applications, Journal of Sound and Vibration 44, 6 (2010) 6–10. [Google Scholar]
  6. K. B. Ginn, K. Haddad: Noise source identification techniques: simple to advanced applications, in: Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 23–27 April, 2012. [Google Scholar]
  7. J. Billingsley, R. Kinns: The acoustic telescope, Journal of Sound and Vibration 48, 4 (1976) 485–510. [CrossRef] [Google Scholar]
  8. Brujel and Kjaer: Technical review No. 1 2004: Beamforming (BV0056-11), 2004. Available at http://www.bksv.com/doc/bv0056.pdf. [Google Scholar]
  9. J.C. Pascal, J.F. Li: On the use of double layer beamforming antenna for industrial applications, in: Proceedings of 5th European Conference on Noise Control: Advanced Solutions for Noise Control, Naples, Italy, May 19–21, 2003. [Google Scholar]
  10. J.D. Maynard, E.G. Williams, Y. Lee: Nearfield acoustic holography: theory of generalized holography and the development of NAH, Journal of the Acoustical Society of America 78, 4 (1985) 1395–1413. [CrossRef] [Google Scholar]
  11. W.A. Veronesi, J.D. Maynard: Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation, Journal of the Acoustical Society of America 81, 5 (1987) 1307–1322. [CrossRef] [Google Scholar]
  12. D.Y. Hu, C.X. Bi, Y.B. Zhang, L. Geng: Extension of planar nearfield acoustic holography for sound source identification in a noisy environment, Journal of Sound and Vibration 333, 24 (2014) 6395–6404. [CrossRef] [Google Scholar]
  13. G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, R. Gribonval: Near-field acoustic holography using sparse regularization and compressive sampling principles, Journal of the Acoustical Society of America 132 (2012) 1521–1534. [CrossRef] [PubMed] [Google Scholar]
  14. E. Fernandez-Grande, A. Xenaki, P. Gerstoft: A sparse equivalent source method for near-field acoustic holography, Journal of the Acoustical Society of America 141 (2017) 532–542. [CrossRef] [PubMed] [Google Scholar]
  15. S.F. Wu: On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method, Journal of the Acoustical Society of America 107, 5 (2000) 2511–2522. [CrossRef] [PubMed] [Google Scholar]
  16. Z. Wang, S.F. Wu: Helmholtz equation-least-squares method for reconstructing the acoustic pressure field, Journal of the Acoustical Society of America 102, 4 (1997) 2020–2032. [Google Scholar]
  17. J. Hald: Basic theory and properties of statistically optimized near-field acoustical holography, Journal of the Acoustical Society of America 125, 4 (2009) 2105–2120. [CrossRef] [PubMed] [Google Scholar]
  18. F. Jacobsen, X. Jaud: Statistically optimized near field acoustic holography using an array of pressure-velocity probes, Journal of the Acoustical Society of America 121, 3 (2007) 1550–1558. [CrossRef] [PubMed] [Google Scholar]
  19. F. Jacobsen, X. Jaud, V. Chenand: A comparison of statistically optimized near field acoustic holography using single layer pressure-velocity measurements and using double layer pressure measurements, Journal of the Acoustical Society of America 123, 4 (2008) 1842–1845. [CrossRef] [PubMed] [Google Scholar]
  20. B.K. Gardner, R.J. Bernhard: A noise source identification technique using an inverse Helmholtz integral equation method, Journal of Vibration and Acoustics 110, 1 (1988) 84–90. [CrossRef] [Google Scholar]
  21. W.A. Veronesi, J.D. Maynard: Digital holographic reconstruction of sources with arbitrarily shaped surfaces, Journal of the Acoustical Society of America 85, 2 (1989) 588–598. [CrossRef] [Google Scholar]
  22. M.R. Bai: Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, Journal of the Acoustical Society of America 92, 1 (1992) 533–549. [CrossRef] [Google Scholar]
  23. A. Schuhmacher, J. Hald, K.B. Rasmussen, P.C. Hansen: Sound source reconstruction using inverse boundary element calculations, Journal of the Acoustical Society of America 113, 1 (2003) 114–127. [CrossRef] [PubMed] [Google Scholar]
  24. C. Langrenne, M. Melon, A. Garcia: Boundary element method for the acoustic characterization of a machine in bounded noisy environment, Journal of the Acoustical Society of America 121, 5 (2007) 2750–2757. [CrossRef] [PubMed] [Google Scholar]
  25. C. Langrenne, M. Melon, A. Garcia: Measurement of confined acoustic sources using near-field acoustic holography, Journal of the Acoustical Society of America 126, 3 (2009) 1250–1256. [CrossRef] [PubMed] [Google Scholar]
  26. G.H. Koopmann, L. Song, J.B. Fahnline: A method for computing acoustic fields based on the principle of wave superposition, Journal of the Acoustical Society of America 86, 6 (1989) 2433–2438. [CrossRef] [Google Scholar]
  27. A. Pereira: Acoustic imaging in enclosed spaces, Doctoral thesis, INSA Lyon, 2013. [Google Scholar]
  28. C.X. Bi, X.Z. Chen, J. Chen: Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography, Journal of the Acoustical Society of America 123, 3 (2008) 1472–1478. [CrossRef] [PubMed] [Google Scholar]
  29. C.X. Bi, J.S. Bolton: An equivalent source technique for recovering the free sound field in a noisy environment, Journal of the Acoustical Society of America 131, 2 (2012) 1260–1270. [CrossRef] [PubMed] [Google Scholar]
  30. C.X. Bi, D.Y. Hu, Y.B. Zhang, J.S. Bolton: Reconstruction of the free-field radiation from a vibrating structure based on measurements in a noisy environment, Journal of the Acoustical Society of America 134, 4 (2013) 2823–2832. [CrossRef] [PubMed] [Google Scholar]
  31. E. Fernandez-Grande, F. Jacobsen, Q. Leclère: Sound field separation with sound pressure and particle velocity measurements, Journal of the Acoustical Society of America 132, 6 (2012) 3818–3825. [CrossRef] [PubMed] [Google Scholar]
  32. P.-A. Grumiaux, S. Kitic′, L. Girin, A. Guérin: A survey of sound source localization with deep learning methods, Journal of the Acoustical Society of America 152, 1 (2022) 107–151. [CrossRef] [PubMed] [Google Scholar]
  33. M.J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M.A. Roch, S. Gannot, C.-A. Deledalle: Machine learning in acoustics: theory and applications, Journal of the Acoustical Society of America 146 (2019) 3590–3628. [CrossRef] [PubMed] [Google Scholar]
  34. S.K. Chaitanya, S. Sriraman, S. Srinivasan, K. Srinivasan: Machine learning aided near-field acoustic holography based on equivalent source method, Journal of the Acoustical Society of America 153 (2023) 940–951. [CrossRef] [PubMed] [Google Scholar]
  35. M. Aucejo, N. Totaro, J.L. Guyader: Identification of source velocities on 3D structures in non-anechoic environments: theoretical background and experimental validation of the inverse patch transfer functions method, Journal of Sound and Vibration 329, 18 (2010) 3691–3708. [CrossRef] [Google Scholar]
  36. D. Vigoureux, N. Totaro, J. Lagneaux, J.L. Guyader: Inverse patch transfer functions method as a tool for source field identification, Journal of Vibration and Acoustics 137, 2 (2015). [CrossRef] [Google Scholar]
  37. S. Forget, N. Totaro, J.L. Guyader: Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept, Journal of Sound and Vibration 381 (2016) 48–64. [CrossRef] [Google Scholar]
  38. M. Aucejo, N. Totaro, J.L. Guyader: Identification of source velocities with Inverse Patch Transfer Functions method, in: Proceedings of ACOUSTICSO8, Paris, France, 2008. [Google Scholar]
  39. M. Aucejo, N. Totaro, J.L. Guyader: Identification of source velocities in presence of external correlated sources with the inverse patch transfer functions (IPTF) method, in: Proceedings of NOVEM 2009, Oxford, UK, 2009. [Google Scholar]
  40. N. Totaro, C. Sandier, J.L. Guyader: Identify velocity of a complex source with iPTF method, in: Proceedings of ICSV15, Daejon, Korea, 2008. [Google Scholar]
  41. N. Totaro, D. Vigoureux, Q. Leclère, J. Lagneaux, J.L. Guyader: Sound fields separation and reconstruction of irregularly shaped sources, Journal of Sound and Vibration 336 (2015) 62–81. [CrossRef] [Google Scholar]
  42. A. Tikhonov, V. Arsenin: Solution of ill-posed problems, John Wiley & Sons, New York, 1977. [Google Scholar]
  43. M.A. Lukas: Robust generalized cross-validation for choosing the regularization parameter, Inverse Problems 22 (2006) 1883–1902. [CrossRef] [Google Scholar]
  44. J.P. Barnes, P.R. Johnston: Application of robust generalised cross-validation to the inverse problem of electrocardiology, Computers in Biology and Medicine 69 (2016) 213–225. [CrossRef] [PubMed] [Google Scholar]
  45. B. Forrier, T. D’hondt, L. Cecconi, M. Sarrazin: Validation of a novel XiL setup for frontloaded testing of an electric vehicle powertrain, in: Proceedings of Resource Efficient Vehicles Conference, Stockholm, Sweden, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.