Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Active Noise and Vibration Control
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/aacus/2024051 | |
Published online | 20 September 2024 |
- L. Lu, K.-L. Yin, R.C. de Lamare, Z. Zheng, Y. Yu, X. Yang, B. Chen: A survey on active noise control in the past decade – Part I: linear systems, Signal Processing 183 (2021) 108039. [CrossRef] [Google Scholar]
- J. Lorente, M. Ferrer, M. de Diego, A. Gonzalez: The frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for multichannel active noise control, Digital Signal Processing 43 (2015) 47–58. [CrossRef] [Google Scholar]
- M.T. Akhtar, W. Mitsuhashi: Improving performance of FxLMS algorithm for active noise control of impulsive noise, Journal of Sound and Vibration 327, 3–5 (2009) 647–656. [CrossRef] [Google Scholar]
- I.T. Ardekani, W.H. Abdulla: Theoretical convergence analysis of FxLMS algorithm, Signal Processing 90, 12 (2010) 3046–3055. [CrossRef] [Google Scholar]
- G.W. Evans, M. Bullinger, S. Hygge: Chronic noise exposure and physiological response: a prospective study of children living under environmental stress, Psychological Science 9, 1 (1998) 75–77. [CrossRef] [Google Scholar]
- S. Liebich, J.-G. Richter, J. Fabry, C. Durand, J. Fels, P. Jax: Direction-of-arrival dependency of active noise cancellation headphones, in: ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, Chicago, Illinois, USA, August 26–29, 2018. [Google Scholar]
- V. Patel, J. Cheer, S. Fontana: Design and implementation of an active noise control headphone with directional hear-through capability, IEEE Transactions on Consumer Electronics 66, 1 (2020) 32–40. [CrossRef] [Google Scholar]
- T. Xiao, B. Xu, C. Zhao: Spatially selective active noise control systems, Journal of the Acoustical Society of America 153 (2023) 2733. [CrossRef] [PubMed] [Google Scholar]
- R. Serizel, M. Moonen, J. Wouters, S.H. Jensen: Integrated active noise control and noise reduction in hearing aids, IEEE Transactions on Audio, Speech, and Language Processing 18, 6 (2009) 1137–1146. [Google Scholar]
- X. Shen, D. Shi, W.-S. Gan, S. Peksi: Adaptive-gain algorithm on the fixed filters applied for active noise control headphone, Mechanical Systems and Signal Processing 169 (2022) 108641. [CrossRef] [Google Scholar]
- F. An, B. Liu: Cascade biquad controller design for feedforward active noise control headphones considering incident noise from multiple directions, Applied Acoustics 185 (2022) 108430. [CrossRef] [Google Scholar]
- P. Zachos, J. Mourjopoulos: Beamforming headphone ANC for targeted noise attenuation, in: 154th Audio Engineering Society Convention, Espoo, Finland, 13–15 May, Audio Engineering Society, 2023. [Google Scholar]
- P. Zachos, G. Moiragias, J. Mourjopoulos: Targeted beamforming active noise control based on disturbance metrics, in: 10th Convention of the European Acoustics Association Forum Acusticum 2023, Politecnico di Torino, Torino, Italy, 11–15 September, 2023, pp. 3627–3634. [Google Scholar]
- J. Cheer, V. Patel, S. Fontana: The application of a multi-reference control strategy to noise cancelling headphones, Journal of the Acoustical Society of America 145, 5 (2019) 3095–3103. [CrossRef] [PubMed] [Google Scholar]
- C. Oberzut, L. Olson: Directionality and the head-shadow effect, Hearing Journal 56, 4 (2003) 56–58. [CrossRef] [Google Scholar]
- H.L. Van Trees: Optimum array processing: Part IV of detection, estimation, and modulation theory, John Wiley & Sons, Hoboken, New Jersey, USA, 2002. [CrossRef] [Google Scholar]
- O.L. Frost: An algorithm for linearly constrained adaptive array processing, Proceedings of the IEEE 60, 8 (1972) 926–935. [CrossRef] [Google Scholar]
- H. Cox, R. Zeskind, M. Owen: Robust adaptive beamforming, IEEE Transactions on Acoustics, Speech, and Signal Processing 35, 10 (1987) 1365–1376. [CrossRef] [Google Scholar]
- S.M. Kim, C.J. Chun, H.K. Kim: Multi-channel audio recording based on superdirective beamforming for portable multimedia recording devices, IEEE Transactions on Consumer Electronics 60, 3 (2014) 429–435. [CrossRef] [Google Scholar]
- C. Armstrong, L. Thresh, D. Murphy, G. Kearney: A perceptual evaluation of individual and non-individual HRTFS: a case study of the SADIE II database, Applied Sciences 8, 11 (2018) 2029. [CrossRef] [Google Scholar]
- EBU Recommendation: Loudness normalisation and permitted maximum level of audio signals, European Broadcasting Union, London, UK, 2011. [Google Scholar]
- M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess, S. Westphal, B. Edler, J. Herre: webMUSHRA – A comprehensive framework for web-based listening tests, Journal of Open Research Software 6, 1 (2018) 8. [CrossRef] [Google Scholar]
- N. Zacharov: Sensory evaluation of sound, CRC Press, Boca Raton, Florida, USA, 2018. [CrossRef] [Google Scholar]
- T.N.T. Nguyen, K.N. Watcharasupat, N.K. Nguyen, D.L. Jones, W.-S. Gan: Salsa: Spatial cueaugmented log-spectrogram features for polyphonic sound event localization and detection, IEEE/ACM Transactions on Audio, Speech, and Language Processing 30 (2022) 1749–1762. [CrossRef] [Google Scholar]
- T.N.T. Nguyen, D.L. Jones, K.N. Watcharasupat, H. Phan, W.-S. Gan: SALSA-Lite: a fast and effective feature for polyphonic sound event localization and detection with microphone arrays, in: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 23–27 May, IEEE, 2022, pp. 716–720. [Google Scholar]
- S. Araki, H. Sawada, R. Mukai, S. Makino: Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors, Signal Processing 87, 8 (2007) 1833–1847. [CrossRef] [Google Scholar]
- J. Thiemann, N. Ito, E. Vincent: The Diverse Environments Multi-channel Acoustic Noise Database (DEMAND): A database of multichannel environmental noise recordings, in: 21st International Congress on Acoustics, Acoustical Society of America, Montreal, Canada, June, 2013. https://doi.org/10.5281/zenodo.1227120.hal-00796707. [Google Scholar]
- D.S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E.D. Cubuk, Q.V. Le: SpecAugment: a simple data augmentation method for automatic speech recognition, arXiv preprint, 2019. Available at https://arxiv.org/abs/1904.08779. [Google Scholar]
- Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang: Random erasing data augmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020) 13001–13008. [CrossRef] [Google Scholar]
- Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, M.D. Plumbley: PANNS: large-scale pretrained audio neural networks for audio pattern recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 2880–2894. [CrossRef] [Google Scholar]
- D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, 2014. Available at https://arxiv.org/abs/1412.6980. [Google Scholar]
- X. Kong, S. Kuo: Study of causality constraint on feedforward active noise control systems, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46, 2 (1999) 183–186. [CrossRef] [Google Scholar]
- P. Nelson, J. Hammond, P. Joseph, S. Elliott: Active control of stationary random sound fields, Journal of the Acoustical Society of America 87, 3 (1990) 963–975. [CrossRef] [Google Scholar]
- R.A. Burdisso, J.S. Vipperman, C.R. Fuller: Causality analysis of feedforward controlled systems with broadband inputs, Journal of the Acoustical Society of America 94, 1 (1993) 234–242. [CrossRef] [Google Scholar]
- S. Liebich, J. Fabry, P. Jax, P. Vary: Acoustic path database for ANC in-ear headphone development, Universitätsbibliothek der RWTH Aachen, Aachen, Germany, 2019. [Google Scholar]
- M. Friedman: The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American statistical association 32, 200 (1937) 675–701. [CrossRef] [Google Scholar]
- P. Zachos, G. Kamaris, J. Mourjopoulos: Feedforward headphone active noise control utilizing auditory masking, Journal of the Audio Engineering Society 72 (2024) 235–246. [CrossRef] [Google Scholar]
- G. Moiragias, J. Mourjopoulos: An evaluation method for temporal spatial sound attributes, in: 154th Audio Engineering Society Convention, Espoo, Finland, 13–15 May, Audio Engineering Society, 2023. [Google Scholar]
- G. Moiragias, J. Mourjopoulos: Analysis and model of temporal sound attributes from recorded audio, Journal of the Audio Engineering Society 72 (2024) 416–432. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.